Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Directional transport of high-temperature Janus droplets mediated by structural topography

Abstract

Directed motion of liquid droplets is of considerable importance in various water and thermal management technologies. Although various methods to generate such motion have been developed at low temperature, they become rather ineffective at high temperature, where the droplet transits to a Leidenfrost state. In this state, it becomes challenging to control and direct the motion of the highly mobile droplets towards specific locations on the surface without compromising the effective heat transfer. Here we report that the wetting symmetry of a droplet can be broken at high temperature by creating two concurrent thermal states (Leidenfrost and contact-boiling) on a topographically patterned surface, thus engendering a preferential motion of a droplet towards the region with a higher heat transfer coefficient. The fundamental understanding and the ability to control the droplet dynamics at high temperature have promising applications in various systems requiring high thermal efficiency, operational security and fidelity.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Characterization of the non-uniform surface and wetting property.
Figure 2: Droplet dynamics at high temperature.
Figure 3: Phase diagram.
Figure 4: Dependence of Leidenfrost point on structural topography.
Figure 5: Directional droplet motion on a tilted surface.
Figure 6: Controlling droplet vectoring and confinement by tailoring the structural topography and substrate temperature.

References

  1. Quéré, D. Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197–215 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  2. Chaudhury, M. K., Chakrabarti, A. & Daniel, S. Generation of motion of drops with interfacial contact. Langmuir 31, 9266–9281 (2015).

    Article  Google Scholar 

  3. Chaudhury, M. K. & Whitesides, G. M. How to make water run uphill. Science 256, 1539–1541 (1992).

    Article  ADS  Google Scholar 

  4. Chu, K. H., Xiao, R. & Wang, E. N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nature Mater. 9, 413–417 (2010).

    Article  ADS  Google Scholar 

  5. Cira, N. J., Benusiglio, A. & Prakash, M. Vapour-mediated sensing and motility in two-component droplets. Nature 519, 446–450 (2015).

    Article  ADS  Google Scholar 

  6. Bormashenko, E. et al. Self-propulsion of liquid marbles: Leidenfrost-like levitation driven by Marangoni flow. J. Phys. Chem. C 119, 9910–9915 (2015).

    Article  Google Scholar 

  7. Ichimura, K., Oh, S. K. & Nakagawa, M. Light-driven motion of liquids on a photoresponsive surface. Science 288, 1624–1626 (2000).

    Article  ADS  Google Scholar 

  8. Brzoska, J. B., Brochard-Wyart, F. & Rondelez, F. Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir 9, 2220–2224 (1993).

    Article  Google Scholar 

  9. Habenicht, A., Olapinski, M., Burmeister, F., Leiderer, P. & Boneberg, J. Jumping nanodroplets. Science 309, 2043–2045 (2005).

    Article  ADS  Google Scholar 

  10. Pollack, M. G., Fair, R. B. & Shenderov, A. D. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett. 77, 1725–1726 (2000).

    Article  ADS  Google Scholar 

  11. Wang, Z. et al. Polarity-dependent electrochemically controlled transport of water through carbon nanotube membranes. Nano Lett. 7, 697–702 (2007).

    Article  ADS  Google Scholar 

  12. McHale, G., Brown, C. V., Newton, M. I., Wells, G. G. & Sampara, N. Dielectrowetting driven spreading of droplets. Phys. Rev. Lett. 107, 186101 (2011).

    Article  ADS  Google Scholar 

  13. Daniel, S., Chaudhury, M. K. & De Gennes, P. G. Vibration-actuated drop motion on surfaces for batch microfluidic processes. Langmuir 21, 4240–4248 (2005).

    Article  Google Scholar 

  14. Blossey, R. Self-cleaning surfaces—virtual realities. Nature Mater. 2, 301–306 (2003).

    Article  ADS  Google Scholar 

  15. Lafuma, A. & Quéré, D. Superhydrophobic states. Nature Mater. 2, 457–460 (2003).

    Article  ADS  Google Scholar 

  16. Yarin, A. L. Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159–192 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  17. Tuteja, A. et al. Designing superoleophobic surfaces. Science 318, 1618–1622 (2007).

    Article  ADS  Google Scholar 

  18. Courbin, L. et al. Imbibition by polygonal spreading on microdecorated surfaces. Nature Mater. 6, 661–664 (2007).

    Article  ADS  Google Scholar 

  19. Verho, T. et al. Mechanically durable superhydrophobic surfaces. Adv. Mater. 23, 673–678 (2011).

    Article  Google Scholar 

  20. de Ruiter, J., Lagraauw, R., van den Ende, D. & Mugele, F. Wettability-independent bouncing on flat surfaces mediated by thin air films. Nature Phys. 11, 48–53 (2014).

    Article  ADS  Google Scholar 

  21. Zhang, T. et al. High-temperature wetting transition on micro- and nanostructured surfaces. Angew. Chem. Int. Ed. 50, 5311–5314 (2011).

    Article  Google Scholar 

  22. Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. & Thoroddsen, S. T. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012).

    Article  ADS  Google Scholar 

  23. Weickgenannt, C. M. et al. Inverse-Leidenfrost phenomenon on nanofiber mats on hot surfaces. Phys. Rev. E 84, 036310 (2011).

    Article  ADS  Google Scholar 

  24. Burton, J. C., Sharpe, A. L., van der Veen, R. C. A., Franco, A. & Nagel, S. R. Geometry of the vapor layer under a Leidenfrost drop. Phys. Rev. Lett. 109, 074301 (2012).

    Article  ADS  Google Scholar 

  25. Caswell, T. A. Dynamics of the vapor layer below a Leidenfrost drop. Phys. Rev. E 90, 013014 (2014).

    Article  ADS  Google Scholar 

  26. Soto, D. Non-Wetting Drops: From Impacts to Self-Propulsion PhD thesis, Université Pierre et Marie Curie-Paris VI (2014).

  27. Linke, H. et al. Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502 (2006).

    Article  ADS  Google Scholar 

  28. Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. Leidenfrost on a ratchet. Nature Phys. 7, 395–398 (2011).

    Article  ADS  Google Scholar 

  29. Würger, A. Leidenfrost gas ratchets driven by thermal creep. Phys. Rev. Lett. 107, 164502 (2011).

    Article  ADS  Google Scholar 

  30. Agapov, R. L. et al. Asymmetric wettability of nanostructures directs Leidenfrost droplets. ACS Nano 8, 860–867 (2013).

    Article  Google Scholar 

  31. Liu, C., Ju, J., Ma, J., Zheng, Y. & Jiang, L. Directional drop transport achieved on high-temperature anisotropic wetting surfaces. Adv. Mater. 26, 6086–6091 (2014).

    Article  Google Scholar 

  32. Thimbleby, H. The Leidenfrost phenomenon. Phys. Educ. 24, 300–303 (1989).

    Article  ADS  Google Scholar 

  33. Narhe, R. D., Khandkar, M. D., Shelke, P. B., Limaye, A. V. & Beysens, D. A. Condensation-induced jumping water drops. Phys. Rev. E 80, 031604 (2009).

    Article  ADS  Google Scholar 

  34. Boreyko, J. B. & Chen, C.-H. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).

    Article  ADS  Google Scholar 

  35. Chen, X. et al. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 21, 4617–4623 (2011).

    Article  Google Scholar 

  36. Noblin, X., Yang, S. & Dumais, J. Surface tension propulsion of fungal spores. J. Exp. Biol. 212, 2835–2843 (2009).

    Article  Google Scholar 

  37. Richard, D., Christophe, C. & Quéré, D. Surface phenomena: contact time of a bouncing drop. Nature 417, 811 (2002).

    Article  ADS  Google Scholar 

  38. Bird, J. C., Dhiman, R., Kwon, H. M. & Varanasi, K. K. Reducing the contact time of a bouncing drop. Nature 503, 385–388 (2013).

    Article  ADS  Google Scholar 

  39. Liu, Y. et al. Pancake bouncing on superhydrophobic surfaces. Nature Phys. 10, 515–519 (2014).

    Article  ADS  Google Scholar 

  40. Liu, Y., Andrew, M., Li, J., Yeomans, J. M. & Wang, Z. Symmetry breaking in drop bouncing on curved surfaces. Nature Commun. 6, 10034 (2015).

    Article  ADS  Google Scholar 

  41. Harvie, D. J. & Fletcher, D. F. A hydrodynamic and thermodynamic simulation of droplet impacts on hot surfaces, Part I: theoretical model. Int. J. Heat Mass Transfer 44, 2633–2642 (2001).

    Article  Google Scholar 

  42. Deng, T. et al. Nonwetting of impinging droplets on textured surfaces. Appl. Phys. Lett. 94, 133109 (2009).

    Article  ADS  Google Scholar 

  43. Hee Kwon, D. & JoonLee, S. Impact and wetting behaviors of impinging microdroplets on superhydrophobic textured surfaces. Appl. Phys. Lett. 100, 171601 (2012).

    Article  ADS  Google Scholar 

  44. Dash, S., Alt, M. T. & Garimella, S. V. Hybrid surface design for robust superhydrophobicity. Langmuir 28, 9606–9615 (2012).

    Article  Google Scholar 

  45. Adera, S., Raj, R., Enright, R. & Wang, E. N. Non-wetting droplets on hot superhydrophilic surfaces. Nature Commun. 4, 2518 (2013).

    Article  ADS  Google Scholar 

  46. Kwon, H.-M., Bird, J. C. & Varanasi, K. K. Increasing Leidenfrost point using micro-nano hierarchical surface structures. Appl. Phys. Lett. 103, 201601 (2013).

    Article  ADS  Google Scholar 

  47. Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. Drop impact on superheated surfaces. Phys. Rev. Lett. 108, 036101 (2012).

    Article  ADS  Google Scholar 

  48. Bartolo, D., Josserand, C. & Bonn, D. Retraction dynamics of aqueous drops upon impact on non-wetting surfaces. J. Fluid Mech. 545, 329–338 (2005).

    Article  ADS  Google Scholar 

  49. Daniel, S., Chaudhury, M. K. & Chen, J. C. Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001).

    Article  ADS  Google Scholar 

  50. Chaudhury, M. K., Chakrabarti, A. & Tibrewal, T. Coalescence of drops near a hydrophilic boundary leads to long range directed motion. Extreme Mech. Lett. 1, 104–113 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the RGC Grants (No. 11213414, No. 11213915 and No. CityU9/CRF/13G), the National Natural Science Foundation of China (No. 51475401 and No. 51276152) to Z.W. and ITF/324/14 to S.Y.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. conceived the research; J.L. and Z.W. designed the experiment; S.Y. and Y.H. prepared the samples; J.L., Y.L., C.H. and M.L. carried out the experiments; J.L., M.K.C. and Z.W. analysed the data; Z.W., M.K.C., J.L. and S.Y. wrote the manuscript.

Corresponding authors

Correspondence to Manoj K. Chaudhury, Shuhuai Yao or Zuankai Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information (PDF 1227 kb)

Supplementary Movie 1

Supplementary Movie (MOV 2820 kb)

Supplementary Movie 2

Supplementary Movie (MOV 3317 kb)

Supplementary Movie 3

Supplementary Movie (MOV 3549 kb)

Supplementary Movie 4

Supplementary Movie (MOV 6775 kb)

Supplementary Movie 5

Supplementary Movie (MOV 3680 kb)

Supplementary Movie 6

Supplementary Movie (MOV 8805 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hou, Y., Liu, Y. et al. Directional transport of high-temperature Janus droplets mediated by structural topography. Nature Phys 12, 606–612 (2016). https://doi.org/10.1038/nphys3643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing