Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Double-Q spin-density wave in iron arsenide superconductors

Abstract

Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high-temperature superconductivity. Until recently, it was thought that superconductivity emerges only from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of certain hole-doped compounds, revealing the existence of a new magnetic phase at compositions close to the onset of superconductivity. Here, we present Mössbauer data that show that half of the iron sites in this tetragonal phase are non-magnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. Instead, this state is naturally explained as the interference between two commensurate spin-density waves, a rare example of collinear double-Q magnetic order. Our results demonstrate the itinerant character of the magnetism of the iron pnictides, and the primary role played by magnetic degrees of freedom in determining their phase diagram.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Temperature-dependent diffraction data of Sr0.63Na0.37Fe2As2.
Figure 2: Single-Q and double-Q magnetic models.
Figure 3: Mössbauer spectroscopy data.

References

  1. Slater, J. C. Ferromagnetism and the band theory. Rev. Mod. Phys. 25, 199–210 (1953).

    ADS  Article  Google Scholar 

  2. Van Vleck, J. H. Models of exchange coupling in ferromagnetic media. Rev. Mod. Phys. 25, 220–227 (1953).

    ADS  Article  Google Scholar 

  3. Herring, C. in Magnetism (eds Rado, G. T. & Suhl, H.) Vol. IV (Academic, 1966).

    Google Scholar 

  4. Moriya, T. & Takahashi, Y. Itinerant electron magnetism. Annu. Rev. Mater. Sci. 14, 1–25 (1984).

    ADS  Article  Google Scholar 

  5. Chubukov, A. V. Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Matter Phys. 3, 57–92 (2012).

    Article  Google Scholar 

  6. Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

    ADS  Article  Google Scholar 

  7. Si, Q. & Abrahams, E. Strong correlations and magnetic frustration in the high Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).

    ADS  Article  Google Scholar 

  8. Seo, K., Bernevig, B. A. & Hu, J. Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

    ADS  Article  Google Scholar 

  9. de’ Medici, L., Giovannetti, G. & Capone, M. Selective Mott physics as a key to iron superconductors. Phys. Rev. Lett. 112, 177001 (2014).

    ADS  Article  Google Scholar 

  10. Krüger, F., Kumar, S., Zaanen, J. & van den Brink, J. Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors. Phys. Rev. B 79, 054504 (2009).

    ADS  Article  Google Scholar 

  11. Kontani, H., Inoue, Y., Saito, T., Yamakawa, Y. & Onari, S. Orbital fluctuation theory in iron-based superconductors: s++-wave superconductivity, structure transition, and impurity-induced nematic order. Solid State Commun. 152, 718–727 (2012).

    ADS  Article  Google Scholar 

  12. Chubukov, A. V., Efremov, D. V. & Eremin, I. Magnetism, superconductivity, and pairing symmetry in iron-based superconductors. Phys. Rev. B 78, 134512 (2008).

    ADS  Article  Google Scholar 

  13. Cvetkovic, V. & Tešanović, Z. Multiband magnetism and superconductivity in Fe-based compounds. Europhys. Lett. 85, 37002 (2009).

    ADS  Article  Google Scholar 

  14. Fernandes, R. M. et al. Unconventional pairing in the iron arsenide superconductors. Phys. Rev. B 81, 140501 (2010).

    ADS  Article  Google Scholar 

  15. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nature Phys. 10, 97–104 (2014).

    ADS  Article  Google Scholar 

  16. Johannes, M. & Mazin, I. Microscopic origin of magnetism and magnetic interactions in ferropnictides. Phys. Rev. B 79, 220510 (2009).

    ADS  Article  Google Scholar 

  17. Hansmann, P. et al. Dichotomy between large local and small ordered magnetic moments in iron-based superconductors. Phys. Rev. Lett. 104, 197002 (2010).

    ADS  Article  Google Scholar 

  18. Yin, W.-G., Lee, C.-C. & Ku, W. Unified picture for magnetic correlations in iron-based superconductors. Phys. Rev. Lett. 105, 107004 (2010).

    ADS  Article  Google Scholar 

  19. Yin, Z. P., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nature Mater. 10, 932–935 (2011).

    ADS  Article  Google Scholar 

  20. Bascones, E., Valenzuela, B. & Calderón, M. J. Orbital differentiation and the role of orbital ordering in the magnetic state of Fe superconductors. Phys. Rev. B 86, 174508 (2012).

    ADS  Article  Google Scholar 

  21. Dai, P., Hu, J. & Dagotto, E. Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nature Phys. 8, 709–718 (2012).

    ADS  Article  Google Scholar 

  22. Avci, S. et al. Structural, magnetic, and superconducting properties of Ba1−xNaxFe2As2 . Phys. Rev. B 88, 094510 (2013).

    ADS  Article  Google Scholar 

  23. Avci, S. et al. Magnetically driven suppression of nematic order in an iron-based superconductor. Nature Commun. 5, 3845 (2014).

    ADS  Article  Google Scholar 

  24. Yu, R., Goswami, P., Si, Q., Nikolic, P. & Zhu, J.-X. Superconductivity at the border of electron localization and itinerancy. Nature Commun. 4, 2783 (2013).

    ADS  Article  Google Scholar 

  25. Böhmer, A. E. et al. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1−xKxFe2As2 . Nature Commun. 6, 7911 (2015).

    ADS  Article  Google Scholar 

  26. Allred, J. M. et al. Tetragonal magnetic phase in Ba1−xKxFe2As2 from X-ray and neutron diffraction. Phys. Rev. B 92, 094515 (2015).

    ADS  Article  Google Scholar 

  27. Hassinger, E. et al. Pressure-induced Fermi-surface reconstruction in the iron-arsenide superconductor Ba1−xKxFe2As2: evidence of a phase transition inside the antiferromagnetic phase. Phys. Rev. B 86, 140502 (2012).

    ADS  Article  Google Scholar 

  28. Khalyavin, D. D. et al. Symmetry of reentrant tetragonal phase in Ba1−xNaxFe2As2: magnetic versus orbital ordering mechanism. Phys. Rev. B 90, 174511 (2014).

    ADS  Article  Google Scholar 

  29. Giovannetti, G. et al. Proximity of iron pnictide superconductors to a quantum tricritical point. Nature Commun. 2, 398 (2011).

    ADS  Article  Google Scholar 

  30. Eremin, I. & Chubukov, A. V. Magnetic degeneracy and hidden metallicity of the spin-density-wave state in ferropnictides. Phys. Rev. B 81, 024511 (2010).

    ADS  Article  Google Scholar 

  31. Brydon, P. M. R., Schmiedt, J. & Timm, C. Microscopically derived Ginzburg-Landau theory for magnetic order in the iron pnictides. Phys. Rev. B 84, 214510 (2011).

    ADS  Article  Google Scholar 

  32. Wang, X., Kang, J. & Fernandes, R. M. Magnetic order without tetragonal-symmetry-breaking in iron arsenides: microscopic mechanism and spin-wave spectrum. Phys. Rev. B 91, 024401 (2015).

    ADS  Article  Google Scholar 

  33. Gastiasoro, M. N. & Andersen, B. M. Competing magnetic double-Q phases and superconductivity-induced re-entrance of C2 magnetic stripe order in iron pnictides. Phys. Rev. B 92, 140506 (2015).

    ADS  Article  Google Scholar 

  34. Fernandes, R. M., Kivelson, S. A. & Berg, E. Is there a hidden chiral density-wave in the iron-based superconductors? Preprint at http://arXiv.org/abs/1504.03656 (2015).

  35. Waßer, F. et al. Spin reorientation in Ba0.65Na0.35Fe2As2 studied by single-crystal neutron diffraction. Phys. Rev. B 91, 060505 (2015).

    ADS  Article  Google Scholar 

  36. Jo, T. On the possibility of the multiple spin density wave state in the first-kind antiferromagnetic FCC metals. J. Phys. F 13, L211–L216 (1983).

    ADS  Article  Google Scholar 

  37. Long, M. W. Effects that can stabilise multiple spin-density waves. J. Phys. Condens. Matter 1, 2857–2874 (1989).

    ADS  Article  Google Scholar 

  38. Fishman, R. S. et al. Structural and magnetic phase transitions in Mn–Ni alloys. Phys. Rev. B 61, 12159–12168 (2000).

    ADS  Article  Google Scholar 

  39. Cortes-Gil, R. & Clarke, S. J. Structure, magnetism, and superconductivity of the layered iron arsenides Sr1−xNaxFe2As2 . Chem. Mater. 23, 1009–1016 (2011).

    Article  Google Scholar 

  40. McGuire, M. A. et al. Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra. Phys. Rev. B 78, 094517 (2008).

    ADS  Article  Google Scholar 

  41. Kitao, S. et al. Spin ordering in LaFeAsO and its suppression in superconductor LaFeAsO0.89F0.11 probed by Mössbauer spectroscopy. J. Phys. Soc. Jpn 77, 103706 (2008).

    ADS  Article  Google Scholar 

  42. Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I. & Schmalian, J. Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 85, 024534 (2012).

    ADS  Article  Google Scholar 

  43. Lv, W., Wu, J. & Phillips, P. W. Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides. Phys. Rev. B 80, 224506 (2009).

    ADS  Article  Google Scholar 

  44. Yu, R., Zhu, J.-X. & Si, Q. Orbital-selective superconductivity, gap anisotropy, and spin resonance excitations in a multiorbital t-J1-J2 model for iron pnictides. Phys. Rev. B 89, 024509 (2014).

    ADS  Article  Google Scholar 

  45. Cvetkovic, V. & Vafek, O. Space group symmetry, spin–orbit coupling, and the low-energy effective Hamiltonian for iron-based superconductors. Phys. Rev. B 88, 134510 (2013).

    ADS  Article  Google Scholar 

  46. Borisenko, S. V. et al. Direct observation of spin–orbit coupling in iron-based superconductors. Nature Phys. http://dx.doi.org/10.1038/nphys3594 (2015).

  47. Christensen, M. H., Kang, J., Andersen, B. M., Eremin, I. & Fernandes, R. M. Spin reorientation driven by the interplay between spin–orbit coupling and Hund’s rule coupling in iron pnictides. Phys. Rev. B 92, 214509 (2015).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Work at Argonne (J.M.A., K.M.T., D.E.Bugaris, M.J.K., D.Y.C., H.C., M.G.K., S.R., O.C. and R.O.) was supported by the US Department of Energy, Office of Science, Materials Science and Engineering Division. X-ray experiments were performed at the Advanced Photon Source, which is supported by the Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Neutron experiments were performed at the High Flux Isotope Reactor and Spallation Neutron Source. R.M.F. and J.K. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award number DE-SC0012336. The work of I.E. was supported by the Focus Program 1458 Eisen-Pniktide of the DFG, and by the German Academic Exchange Service (DAAD PPP USA no. 57051534). I.E. also acknowledges the financial support of the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISiS (N 22014015). The authors thank A. A. Aczel, A. Huq, M. J. Kirkham and P. S. Whitfield for experimental assistance, E. E. Alp for use of his Mössbauer spectrometer, and B. M. Andersen, A. V. Chubukov, M. N. Gastiasoro, A. Yaresko and Y. Zhao for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Samples were prepared by D.E.Bugaris, with additional support from D.Y.C., and M.G.K. The experiments were devised by J.M.A., K.M.T., O.C., S.R. and R.O. The X-ray and neutron diffraction experiments were performed by J.M.A., K.M.T., O.C., M.J.K., S.R. and S.H.L. Mössbauer spectroscopy was performed by D.E.Brown Magnetization measurements were performed by H.C. The data were analysed by J.M.A., K.M.T., O.C., S.R., R.O. and D.E.Brown. Theoretical interpretation was provided by J.K., R.M.F. and I.E. The manuscript and Supplementary Information were written by J.M.A., R.O., R.M.F. and I.E. with input from all the authors.

Corresponding author

Correspondence to J. M. Allred.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 895 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Allred, J., Taddei, K., Bugaris, D. et al. Double-Q spin-density wave in iron arsenide superconductors. Nature Phys 12, 493–498 (2016). https://doi.org/10.1038/nphys3629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3629

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing