Abstract
Topological charge pumping enables the transport of charge through an adiabatic cyclic evolution of the underlying Hamiltonian. In contrast to classical transport, the transported charge is quantized and purely determined by the topology of the pump cycle, making it robust to perturbations. Here, we report on the realization of such a pump with ultracold bosonic atoms forming a Mott insulator in a dynamically controlled optical superlattice. By taking in situ images of the cloud, we observe a quantized deflection per pump cycle. We reveal the pump’s genuine quantum nature by showing that, in contrast to ground-state particles, a counterintuitive reversed deflection occurs for particles in the first excited band. Furthermore, we directly demonstrate that the system undergoes a controlled topological transition in higher bands when tuning the superlattice parameters. These results open a route to the implementation of more complex pumping schemes, including spin degrees of freedom and higher dimensions.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures
Nature Communications Open Access 11 October 2022
-
Quantum anomalous semimetals
npj Quantum Materials Open Access 20 September 2022
-
A scheme to create and verify scalable entanglement in optical lattice
npj Quantum Information Open Access 29 August 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Thouless, D. J. Quantization of particle transport. Phys. Rev. B 27, 6083–6087 (1983).
Niu, Q. & Thouless, D. J. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. A 17, 2453 (1984).
Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
Thouless, D., Kohmoto, M., Nightingale, M. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).
Niu, Q. Towards a quantum pump of electric charges. Phys. Rev. Lett. 64, 1812–1815 (1990).
Pekola, J. P. et al. Single-electron current sources: Toward a refined definition of the ampere. Rev. Mod. Phys. 85, 1421–1472 (2013).
Splettstoesser, J., Governale, M., König, J. & Fazio, R. Adiabatic pumping through interacting quantum dots. Phys. Rev. Lett. 95, 246803 (2005).
Marra, P., Citro, R. & Ortix, C. Fractional quantization of the topological charge pumping in a one-dimensional superlattice. Phys. Rev. B 91, 125411 (2015).
Pothier, H., Lafarge, P., Urbina, C., Esteve, D. & Devoret, M. H. Single-electron pump based on charging effects. Europhys. Lett. 17, 249 (1992).
Talyanskii, V. I. et al. Single-electron transport in a one-dimensional channel by high-frequency surface acoustic waves. Phys. Rev. B 56, 15180–15184 (1997).
Blumenthal, M. D. et al. Gigahertz quantized charge pumping. Nature Phys. 3, 343–347 (2007).
Switkes, M., Marcus, C. M., Campman, K. & Gossard, A. C. An adiabatic quantum electron pump. Science 283, 1905–1908 (1999).
Brouwer, P. W. Scattering approach to parametric pumping. Phys. Rev. B 58, R10135 (1998).
Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).
Verbin, M., Zilberberg, O., Lahini, Y., Kraus, Y. E. & Silberberg, Y. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B 91, 064201 (2015).
Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nature Phys. 9, 795–800 (2013).
Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).
Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).
Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).
Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).
Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Duca, L. et al. An Aharonov–Bohm interferometer for determining Bloch band topology. Science 347, 288–292 (2015).
Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015).
Romero-Isart, O. & García-Ripoll, J. J. Quantum ratchets for quantum communication with optical superlattices. Phys. Rev. A 76, 052304 (2007).
Qian, Y., Gong, M. & Zhang, C. Quantum transport of bosonic cold atoms in double-well optical lattices. Phys. Rev. A 84, 013608 (2011).
Wang, L., Troyer, M. & Dai, X. Topological charge pumping in a one-dimensional optical lattice. Phys. Rev. Lett. 111, 026802 (2013).
Karplus, R. & Luttinger, J. M. Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954).
Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).
Wei, R. & Mueller, E. J. Anomalous charge pumping in a one-dimensional optical superlattice. Phys. Rev. A 92, 013609 (2015).
Ringel, Z. & Kraus, Y. E. Determining topological order from a local ground-state correlation function. Phys. Rev. B 83, 245115 (2011).
Wang, L., Soluyanov, A. A. & Troyer, M. Proposal for direct measurement of topological invariants in optical lattices. Phys. Rev. Lett. 110, 166802 (2013).
Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632–5633 (1981).
Harper, P. G. The general motion of conduction electrons in a uniform magnetic field, with application to the diamagnetism of metals. Proc. Phys. Soc. A 68, 879 (1955).
Roux, G. et al. Quasiperiodic Bose–Hubbard model and localization in one-dimensional cold atomic gases. Phys. Rev. A 78, 023628 (2008).
Kraus, Y. E. & Zilberberg, O. Topological equivalence between the Fibonacci quasicrystal and the Harper model. Phys. Rev. Lett. 109, 116404 (2012).
Kraus, Y. E., Ringel, Z. & Zilberberg, O. Four-dimensional quantum Hall effect in a two-dimensional quasicrystal. Phys. Rev. Lett. 111, 226401 (2013).
Azbel, M. Y. Energy spectrum of a conduction electron in a magnetic field. Zh. Eksp. Teor. Fiz. 46, 929–946 (1964) [Sov. Phys. JETP 19, 634–645 (1964)].
Hofstadter, D. R. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).
Hatsugai, Y. & Kohmoto, M. Energy spectrum and the quantum Hall effect on the square lattice with next-nearest-neighbor hopping. Phys. Rev. B 42, 8282–8294 (1990).
Rice, M. J. & Mele, E. J. Elementary excitations of a linearly conjugated diatomic polymer. Phys. Rev. Lett. 49, 1455–1459 (1982).
Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).
Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).
Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015).
Kitagawa, T. et al. Observation of topologically protected bound states in photonic quantum walks. Nature Commun. 3, 882 (2012).
Shindou, R. Quantum spin pump in s = 1/2 antiferromagnetic chains-holonomy of phase operators in sine-Gordon theory. J. Phys. Soc. Jpn 74, 1214–1223 (2005).
Fu, L. & Kane, C. L. Time reversal polarization and a Z2 adiabatic spin pump. Phys. Rev. B 74, 195312 (2006).
Lee, P. J. et al. Sublattice addressing and spin-dependent motion of atoms in a double-well lattice. Phys. Rev. Lett. 99, 020402 (2007).
Zhang, S.-C. & Hu, J. A four-dimensional generalization of the quantum Hall effect. Science 294, 823–828 (2001).
Nakajima, S. et al. Topological Thouless pumping of ultracold fermions. http://dx.doi.org/10.1038/nphys3622 (in the press).
Acknowledgements
We acknowledge insightful discussions with F. Grusdt and S. Kohler. This work was supported by NIM and the EU (UQUAM, SIQS). M.L. was additionally supported by ExQM and O.Z. by the Swiss National Science Foundation.
Author information
Authors and Affiliations
Contributions
M.L., C.S. and M.A. performed the experiment and the data analysis. All authors contributed to the theoretical analysis and to the writing of the paper. I.B. supervised the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 979 kb)
Rights and permissions
About this article
Cite this article
Lohse, M., Schweizer, C., Zilberberg, O. et al. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Nature Phys 12, 350–354 (2016). https://doi.org/10.1038/nphys3584
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3584
This article is cited by
-
Laughlin charge pumping in a quantum anomalous Hall insulator
Nature Physics (2023)
-
Quantized fractional Thouless pumping of solitons
Nature Physics (2023)
-
Topological invariants for anomalous Floquet higher-order topological insulators
Frontiers of Physics (2023)
-
Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures
Nature Communications (2022)
-
Observation of bulk-edge correspondence in topological pumping based on a tunable electric circuit
Communications Physics (2022)