Quantum transport in ultracold atoms


Ultracold atoms confined by engineered magnetic or optical potentials are ideal to study phenomena otherwise difficult to realize or probe in the solid state, thanks to the ability to control the atomic interaction strength, number of species, density and geometry. Here, we review quantum transport phenomena in atomic gases that mirror and can either better elucidate or show fundamental differences with respect to those observed in mesoscopic and nanoscopic systems. We discuss the significant progress in transport experiments in atomic gases, the similarities and differences between transport in cold atoms and in condensed matter systems, and survey theoretical predictions that are difficult to verify in conventional set-ups.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Open versus closed set-ups in electronic and cold-atom systems.
Figure 2: Quantized conductance in cold atoms and electronics.
Figure 3: Transport of atomic superfluid.
Figure 4: Transport of noninteracting and interacting fermions.


  1. 1

    Pethick, C. J. & Smith, H. Bose–Einstein Condensation in Dilute Gases 2nd edn (Cambridge Univ. Press, 2008).

    Google Scholar 

  2. 2

    Jaksch, D. & Zoller, P. The cold atom Hubbard toolbox. Ann. Phys. 315, 52–79 (2005).

    Article  ADS  MATH  Google Scholar 

  3. 3

    Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

    Article  ADS  Google Scholar 

  4. 4

    Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nature Phys. 8, 264–266 (2012).

    Article  ADS  Google Scholar 

  5. 5

    Bloch, I., Dalibard, J. & Nascimbene, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

    Article  ADS  Google Scholar 

  6. 6

    Strohmaier, N. et al. Interaction-controlled transport of an ultracold Fermi gas. Phys. Rev. Lett. 99, 220601 (2007).

    Article  ADS  Google Scholar 

  7. 7

    Schneider, U. et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms. Nature Phys. 8, 213–218 (2012).

    Article  ADS  Google Scholar 

  8. 8

    Eckel, S. et al. Hysteresis in a quantized superfluid “atomtronic” circuit. Nature 506, 200–203 (2014).

    Article  ADS  Google Scholar 

  9. 9

    Salger, T. et al. Directed transport of atoms in a Hamiltonian quantum ratchet. Science 326, 1241–1243 (2009).

    Article  ADS  Google Scholar 

  10. 10

    Brantut, J. P., Meineke, J., Stadler, D., Krinner, S. & Esslinger, T. Conduction of ultracold fermions through a mesoscopic channel. Science 337, 1069–1071 (2012).

    Article  ADS  Google Scholar 

  11. 11

    Krinner, S., Stadler, D., Husmann, D., Brantut, J. P. & Esslinger, T. Observation of quantized conductance in neutral matter. Nature 517, 64–67 (2015).

    Article  ADS  Google Scholar 

  12. 12

    Sommer, A., Ku, M., Roati, G. & Zwierlein, M. W. Universal spin transport in a strongly interacting Fermi gas. Nature 472, 201–204 (2011).

    Article  ADS  Google Scholar 

  13. 13

    Brantut, J. P. et al. A thermoelectric heat engine with ultracold atoms. Science 342, 713–715 (2013).

    Article  ADS  Google Scholar 

  14. 14

    Cheneau, M. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).

    Article  ADS  Google Scholar 

  15. 15

    Krinner, S., Stadler, D., Meineke, J., Brantut, J. P. & Esslinger, T. Superfluidity with disorder in a thin film of quantum gas. Phys. Rev. Lett. 110, 100601 (2013).

    Article  ADS  Google Scholar 

  16. 16

    Stadler, D., Krinner, S., Meineke, J., Brantut, J. P. & Esslinger, T. Observing the drop of resistance in the flow of a superfluid Fermi gas. Nature 491, 736–739 (2012).

    Article  ADS  Google Scholar 

  17. 17

    Atala, M. et al. Observation of chiral currents with ultracold atoms in bosonic ladders. Nature Phys. 10, 588–593 (2014).

    Article  ADS  Google Scholar 

  18. 18

    Ben Dahan, M., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508–4511 (1996).

    Article  ADS  Google Scholar 

  19. 19

    Poli, N. et al. Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett. 106, 038501 (2011).

    Article  ADS  Google Scholar 

  20. 20

    Morsch, O. & Oberthaler, M. Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006).

    Article  ADS  Google Scholar 

  21. 21

    Di Ventra, M. Electrical Transport in Nanoscale Systems (Cambridge Univ. Press, 2008).

    Google Scholar 

  22. 22

    Lee, J. G., McIlvain, B. J., Lobb, C. J. & Hill, W. T. III Analogs of basic electronic circuit elements in a free-space atom chip. Sci. Rep. 3, 1034 (2013).

    Article  ADS  Google Scholar 

  23. 23

    van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  ADS  Google Scholar 

  24. 24

    Chien, C. C., Di Ventra, M. & Zwolak, M. Landauer, Kubo, and microcanonical approaches to quantum transport and noise: A comparison and implications for cold-atom dynamics. Phys. Rev. A 90, 023624 (2014).

    Article  ADS  Google Scholar 

  25. 25

    Desbuquois, R. et al. Superfluid behaviour of a two-dimensional Bose gas. Nature Phys. 8, 645–648 (2012).

    Article  ADS  Google Scholar 

  26. 26

    Rye, C. et al. Observation of persistent flow of a Bose–Einstein condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007).

    Article  ADS  Google Scholar 

  27. 27

    Wright, K. C., Blakestad, R. B., Lobb, C. J., Phillips, W. D. & Campbell, G. K. Driving phase slips in a superfluid atom circuit with a rotating weak link. Phys. Rev. Lett. 110, 025302 (2013).

    Article  ADS  Google Scholar 

  28. 28

    Beattie, S., Moulder, S., Fletcher, R. J. & Hadzibabic, Z. Persistent currents in spinor condensates. Phys. Rev. Lett. 110, 025301 (2013).

    Article  ADS  Google Scholar 

  29. 29

    Albiez, M. et al. Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005).

    Article  ADS  Google Scholar 

  30. 30

    Levy, S., Lahoud, E., Shomroni, I. & Steinhauer, J. The a.c. and d.c. Josephson effects in a Bose-Einstein condensate. Nature 449, 579–583 (2007).

    Article  ADS  Google Scholar 

  31. 31

    Eckel, S., Jendrzejewski, F., Kumar, A., Lobb, C. J. & Campbell, G. K. Interferometric measurement of the current–phase relationship of a superfluid weak link. Phys. Rev. X 4, 031052 (2014).

    Google Scholar 

  32. 32

    Ryu, C., Blackburn, P. W., Blinova, A. A. & Boshier, M. G. Experimental realization of Josephson junctions for an atom SQUID. Phys. Rev. Lett. 111, 205301 (2013).

    Article  ADS  Google Scholar 

  33. 33

    Weitenberg, C. et al. Single-spin addressing in an atomic Mott insulator. Nature 471, 319–324 (2011).

    Article  ADS  Google Scholar 

  34. 34

    Celi, A. et al. Synthetic gauge fields in synthetic dimensions. Phys. Rev. Lett. 112, 043001 (2014).

    Article  ADS  Google Scholar 

  35. 35

    Lin, Y. J. et al. Bose–Einstein condensate in a uniform light-induced vector potential. Phys. Rev. Lett. 102, 130401 (2009).

    Article  ADS  Google Scholar 

  36. 36

    Lin, Y. J., Compton, R. L., Jimenez-Garcia, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

    Article  ADS  Google Scholar 

  37. 37

    Goldman, N., Juzeliunas, G., Ohberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    Article  ADS  Google Scholar 

  38. 38

    Galitski, V. & Spielman, I. B. Spin orbit coupling in quantum gases. Nature 494, 49–54 (2013).

    Article  ADS  Google Scholar 

  39. 39

    LeBlanc, L. J. et al. Observation of a superfluid Hall effect. Proc. Natl Acad. Sci. USA 109, 10811–10814 (2012).

    Article  ADS  Google Scholar 

  40. 40

    Beeler, M. C. et al. The spin Hall effect in a quantum gas. Nature 498, 201–204 (2013).

    Article  ADS  Google Scholar 

  41. 41

    Jiménez-Garcia, K. et al. Peierls substitution in an engineered lattice potential. Phys. Rev. Lett. 108, 225303 (2012).

    Article  ADS  Google Scholar 

  42. 42

    Struck, J. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett. 108, 225304 (2012).

    Article  ADS  Google Scholar 

  43. 43

    Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  ADS  Google Scholar 

  44. 44

    Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    Article  ADS  Google Scholar 

  45. 45

    Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    Article  ADS  Google Scholar 

  46. 46

    Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nature Phys. 11, 162–166 (2015).

    Article  ADS  Google Scholar 

  47. 47

    Goldman, N. et al. Direct imaging of topological edge states in cold-atom systems. Proc. Natl Acad. Sci. USA 110, 6736–6741 (2013).

    Article  ADS  Google Scholar 

  48. 48

    Peotta, S., Chien, C. C. & Di Ventra, M. Phase-induced transport in atomic gases: From superfluid to Mott insulator. Phys. Rev. A 90, 053615 (2014).

    Article  ADS  Google Scholar 

  49. 49

    Nakajima, T. et al. Topological Thouless pumping of ultracold fermions. Preprint at: http://arXiv.org/abs/1507.02223 (2015).

  50. 50

    Lohse, M., Scweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice. Preprint at: http://arXiv.org/abs/1507.02225 (2015).

  51. 51

    Cao, C. et al. Universal quantum viscosity in a unitary Fermi gas. Science 331, 58–61 (2011).

    Article  ADS  Google Scholar 

  52. 52

    Bardon, A. B. et al. Transverse demagnetization dynamics of a unitary Fermi gas. Science 344, 722–724 (2014).

    Article  ADS  Google Scholar 

  53. 53

    Ronzheimer, J. P. et al. Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions. Phys. Rev. Lett. 110, 205301 (2013).

    Article  ADS  Google Scholar 

  54. 54

    Hung, C. L., Zhang, X., Gemelke, N. & Chin, C. Slow mass transport and statistical evolution of an atomic gas across the superfluid Mott-insulator transition. Phys. Rev. Lett. 104, 160403 (2010).

    Article  ADS  Google Scholar 

  55. 55

    McKay, D. C., Meldgin, C., Chen, D. & DeMarco, B. Slow thermalization between a lattice and free Bose gas. Phys. Rev. Lett. 111, 063002 (2013).

    Article  ADS  Google Scholar 

  56. 56

    Billy, J. et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453, 891–894 (2008).

    Article  ADS  Google Scholar 

  57. 57

    Roati, G. et al. Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895–898 (2008).

    Article  ADS  Google Scholar 

  58. 58

    Kondov, S. S., McGehee, W. R., Zirbel, J. J. & DeMarco, B. Three-dimensional Anderson localization of ultracold matter. Science 334, 66–68 (2011).

    Article  ADS  Google Scholar 

  59. 59

    Sanchez-Palencia, L. & Lewenstein, M. Disordered quantum gases under control. Nature Phys. 6, 87–95 (2010).

    Article  ADS  Google Scholar 

  60. 60

    Ott, H. et al. Collisionally induced transport in periodic potentials. Phys. Rev. Lett. 92, 160601 (2004).

    Article  ADS  Google Scholar 

  61. 61

    Labouvie, R., Santra, B., Heun, S., Wimberger, S. & Ott, H. Negative differential conductivity in an interacting quantum gas. Phys. Rev. Lett. 115, 050601 (2015).

    Article  ADS  Google Scholar 

  62. 62

    Chien, C. C., Gruss, D., Di Ventra, M. & Zwolak, M. Interaction-induced conducting non-conducting transition of ultra-cold atoms in one-dimensional optical lattices. New J. Phys. 15, 063026 (2013).

    Article  ADS  Google Scholar 

  63. 63

    Fallani, L., Lye, J. E., Guarrera, V., Fort, C. & Inguscio, M. Ultracold atoms in a disordered crystal of light: Towards a Bose glass. Phys. Rev. Lett. 98, 130404 (2007).

    Article  ADS  Google Scholar 

  64. 64

    Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842–845 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. 65

    Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. Phys. Rev. Lett. 82, 4569–4573 (1999).

    Article  ADS  Google Scholar 

  66. 66

    Seaman, B. T., Krämer, M., Anderson, D. Z. & Holland, M. J. Atomtronics: Ultracold-atom analogs of electronic devices. Phys. Rev. A 75, 023615 (2007).

    Article  ADS  Google Scholar 

  67. 67

    Jeong, H., Chang, A. M. & Melloch, M. R. The Kondo effect in an artificial quantum dot molecule. Science 293, 2221–2223 (2001).

    Article  ADS  Google Scholar 

  68. 68

    Törmä, P. & Sengstock, K. (eds) Quantum Gases Experiments—Exploring Many-Body States (Imperial College Press, 2015).

    Google Scholar 

  69. 69

    Ho, T. L. & Zhou, Q. Intrinsic heating and cooling in adiabatic processes for bosons in optical lattices. Phys. Rev. Lett. 99, 120404 (2007).

    Article  ADS  Google Scholar 

  70. 70

    Chien, C. C. & Di Ventra, M. Dynamical crossover between the infinite-volume and empty-lattice limits of ultra-cold fermions in 1D optical lattices. Europhys. Lett. 99, 40003 (2012).

    Article  ADS  Google Scholar 

  71. 71

    Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Thomson Learning, 1976).

    Google Scholar 

Download references


S.P. and M.D.V. acknowledge support from the DOE under Grant No. DE-FG02-05ER46204. S.P. acknowledges support from the Academy of Finland through its Centres of Excellence Programme (2012–2017) under Project No. 251748.

Author information



Corresponding author

Correspondence to Chih-Chun Chien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chien, CC., Peotta, S. & Di Ventra, M. Quantum transport in ultracold atoms. Nature Phys 11, 998–1004 (2015). https://doi.org/10.1038/nphys3531

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing