Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precision measurement of the mass difference between light nuclei and anti-nuclei

Abstract

The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons1,2. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories3, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons (), and 3He and nuclei carried out with the ALICE (A Large Ion Collider Experiment)4 detector in Pb–Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirms CPT invariance to an unprecedented precision in the sector of light nuclei5,6. This fundamental symmetry of nature, which exchanges particles with anti-particles, implies that all physics laws are the same under the simultaneous reversal of charge(s) (charge conjugation C), reflection of spatial coordinates (parity transformation P) and time inversion (T).

Main

Heavy ions are collided at very high energies at the CERN Large Hadron Collider (LHC) to study matter at extremely high temperatures and densities. Under these conditions heavy-ion collisions are a copious source of matter and anti-matter particles and thus are suitable for an experimental investigation of their properties such as mass and electric charge. In relativistic heavy-ion collisions, nuclei and corresponding anti-nuclei are produced with nearly equal rates7. Their yields have been measured at the Relativistic Heavy Ion Collider (RHIC) by the STAR (ref. 8) and PHENIX (ref. 9) experiments and at the LHC by the ALICE (ref. 4) experiment. So far, the heaviest anti-nucleus which has been observed7 is (anti-α); meanwhile, for lighter nuclei and anti-nuclei, which are more copiously produced, a detailed comparison of their properties is possible. This comparison represents an interesting test of CPT symmetry in an analogous way as done for elementary fermions10,11 and bosons12, and for QED (refs 13, 14) and QCD systems1,2,15,16,17 (a particular example for the latter being the measurements carried out on neutral kaon decays18), with different levels of precision which span over several orders of magnitude. All these measurements can be used to constrain, for different interactions, the parameters of effective field theories that add explicit CPT violating terms to the standard model Lagrangian, such as the standard model extension19 (SME).

The measurements reported in this paper are based on the high-precision tracking and identification capabilities of the ALICE experiment20. The main detectors employed in this analysis are the ITS (inner tracking system)21 for the determination of the interaction vertex, the TPC (time projection chamber)22 for tracking and specific energy loss (dE/dx) measurements, and the TOF (time of flight)23 detector to measure the time tTOF needed by each track to traverse the detector. The combined ITS and TPC information is used to determine the track length (L) and the rigidity (p/z, where p is the momentum and z the electric charge in units of the elementary charge e) of the charged particles in the solenoidal 0.5 T magnetic field of the ALICE central barrel (pseudo-rapidity |η| < 0.8). On the basis of these measurements, we can extract the squared mass-over-charge ratio μTOF2 ≡ (m/z)TOF2 = (p/z)2 [(tTOF/L)2 − 1/c2]. The choice of this variable is motivated by the fact that μ2 is directly proportional to the square of the time of flight, allowing to better preserve its Gaussian behaviour.

The high precision of the TOF detector, which determines the arrival time of the particle with a resolution of 80 ps (ref. 20), allows us to measure a clear signal for (anti-)protons, (anti-)deuterons and (anti-)3He nuclei over a wide rigidity range (1 < p/|z| < 4 GeV/c). The main source of background, which is potentially of the same order of the signal, arises from tracks erroneously associated to a TOF hit. To reduce this contamination, a 2σ cut (where σ is the standard deviation) around the expected TPC dE/dx signal is applied. Such a requirement strongly suppresses (to below 4%) this background for rigidities below p/|z| < 2.0 GeV/c for (anti-)deuterons and for all rigidities for (anti-)3He (to below 1%). For each of the species under study, the mass is extracted by fitting the mass-squared distributions in narrow p/|z| and η intervals, using a Gaussian with a small exponential tail that reflects the time signal distribution of the TOF detector. Examples of the mass-squared distributions for (anti-)deuterons and (anti-)3He candidates are reported in Fig. 1 in selected rigidity intervals.

Figure 1: Examples of squared mass-over-charge ratio distributions in selected rigidity intervals.
figure1

Particle and anti-particle spectra for deuterons (left) and 3He (right) are in the top and bottom plots, respectively. The fit function (red curve) also includes, for the (anti-)deuteron case, an exponential term to describe the background. In the rigidity intervals shown here the background is about 4% for (anti-)deuterons, whereas it is 0.7% for 3He and  . The error bars display the statistical uncertainty.

Using mass differences, rather than absolute masses, allows us to reduce the systematic uncertainties related to tracking, spatial alignment (affecting the measurement of the track momentum and length) and time calibration. Despite that, residual effects are still present, due to imperfections in the detector alignment and the description of the magnetic field, which can lead to position-dependent systematic uncertainties. In terms of relative uncertainties, the ones affecting the measurement of the momentum are the largest and independent of the mass, and are the same for all positive (negative) particles in a given momentum interval. It is therefore possible to correct the (anti-)deuteron and the (anti-)3He masses by scaling them with the ratio between the (anti-)proton masses recommended by the PDG (particle data group)24 () and the ones measured in the analysis presented here (), namely, . These correction factors, which depend on the rigidity, deviate from unity by at most 1%. Conversely, systematic effects connected to the track-length measurement are mass dependent and cannot be completely accounted for using the above correction. However, they are expected to be symmetric for positive and negative particles when inverting the magnetic field. Any residual asymmetry is therefore indicative of remaining systematic uncertainties related to the detector conditions. To estimate them, and keep these effects under control, both nuclei and anti-nuclei measurements are performed for two opposite magnetic field configurations and then averaged. Their half-difference is taken as the estimate of this systematic uncertainty. Other sources of systematic uncertainties are evaluated by varying energy loss corrections applied to the reconstructed momentum, the range and the shape of the background function assumed in the fit of the mass-squared distributions and the track selection criteria. In particular, TPC dE/dx cuts are varied between one and four standard deviations to probe the sensitivity of the fit results on the residual background, and a tracking quality cut on the distance of closest approach of the track to the vertex is varied to evaluate the influence of secondary particles on the measurement. The sources of systematic uncertainties are found to be fully correlated among all the rigidity intervals, except for those due to the fit procedure and the TPC selection criteria, where the uncertainties are uncorrelated. For deuterons and anti-deuterons, the largest relative systematic uncertainties on Δμ/μ come from the detector alignment (0.7 × 10−4), the TPC selection criteria (0.7 × 10−4) and the secondaries (1.0 × 10−4). For 3He and , they come from the energy loss corrections (0.7 × 10−3), the fit procedure (0.5 × 10−3) and the TPC selection criteria (0.4 × 10−3).

The (anti-)deuteron and (anti-)3He masses are measured as the peak position of the fitting curves of the mass-squared distribution. The mass-over-charge ratio differences between the deuteron and 3He and their respective anti-particle are then evaluated as a function of the rigidity of the track, as shown in Fig. 2. The measurements in the individual rigidity intervals are combined, taking into account statistical and systematic uncertainties (correlated and uncorrelated), and the final result is shown in the same figure with one and two standard deviation uncertainty bands. The measured mass-over-charge ratio differences are

corresponding to

where μd and μ 3 He are the values recommended by CODATA (ref. 25). The mass-over-charge differences are compatible with zero within the estimated uncertainties, in agreement with CPT invariance expectations.

Figure 2: d– (top) and 3He– (bottom) mass-over-charge ratio difference measurements as a function of the particle rigidity.
figure2

Vertical bars and open boxes show the statistical and the uncorrelated systematic uncertainties (standard deviations), respectively. Both are taken into account to extract the combined result in the full rigidity range, together with the correlated systematic uncertainty, which is shown as a box with tilted lines. Also shown are the 1σ and 2σ bands around the central value, where σ is the sum in quadrature of the statistical and systematic uncertainties.

Given that and as for the proton and anti-proton1,2, the mass-over-charge differences in equations (1) and (2) and the measurement of the mass differences between proton and anti-proton1,2 and between neutron and anti-neutron15,16 can be used to derive the relative binding energy differences between the two studied particle species. We obtain

where ɛA = Zmp + (AZ)mnmA, with mp and mn being the proton and neutron mass values recommended by the PDG (ref. 24) and mA the mass value of the nucleus with atomic number Z and mass number A, recommended by CODATA (ref. 25). This quantity allows one to explicitly isolate possible violations of the CPT symmetry in the (anti-)nucleon interaction from that connected to the (anti-)nucleon masses, the latter being constrained with a precision of 7 × 10−10 for the proton/anti-proton system1,2. Our results and the comparisons with previous mass difference measurements for (d–) (refs 26, 27) and (3He–) (ref. 28), as well as binding energy measurements for (d–) (refs 29, 30), are reported in Fig. 3.

Figure 3: Measurements of the mass-over-charge ratio and binding energies differences for d– and 3He–.
figure3

The left panel shows ALICE measurements of the mass-over-charge ratio differences compared with CPT invariance expectation (dotted lines) and existing mass measurements MAS65 (ref. 26), DOR65 (ref. 27) and ANT71 (ref. 28). The inset shows the ALICE results on a finer Δ(m/z)/(m/z) scale. The right panel shows our determination of the binding energy differences compared with direct measurements from DEN71 (ref. 29) and KES99 (ref. 30). Error bars represent the sum in quadrature of the statistical and systematic uncertainties (standard deviations).

We have shown that the copious production of (anti-)nuclei in relativistic heavy-ion collisions at the LHC represents a unique opportunity to test the CPT invariance of nucleon–nucleon interactions using light nuclei. In particular, we have measured the mass-over-charge ratio differences for deuterons and 3He. The values are compatible, within uncertainties, with zero and represent a CPT invariance test in systems bound by nuclear forces. The results reported here (Fig. 3, left) represent the highest precision direct measurements of mass differences in the sector of nuclei and they improve by one to two orders of magnitude analogous results originally obtained more than 40 years ago26,27,28, and precisely 50 years ago for the anti-deuteron26,27. Remarkably, such an improvement is reached in an experiment which is not specifically dedicated to test the CPT invariance in nuclear systems. In the forthcoming years the increase in luminosity and centre-of-mass energy at the LHC will allow the sensitivity of these measurements to be pushed forwards, and possibly extend the study to (anti-)4He. Given the equivalence between mass and binding energy differences, our results also improve (Fig. 3, right) by a factor two the constraints on CPT invariance inferred by existing measurements29,30 in the (anti-)deuteron system. The binding energy difference has been determined for the first time in the case of (anti-)3He, with a relative precision comparable to that obtained in the (anti-)deuteron system.

References

  1. 1

    Hori, M. et al. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio. Nature 475, 484–488 (2011).

    Article  Google Scholar 

  2. 2

    Gabrielse, G. et al. Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198–3201 (1999).

    ADS  Article  Google Scholar 

  3. 3

    van Kolck, U. Effective field theory of nuclear forces. Prog. Part. Nucl. Phys. 43, 337–418 (1999).

    ADS  Article  Google Scholar 

  4. 4

    Aamodt, K. et al. (ALICE collaboration). The ALICE experiment at the CERN LHC. J. Instrum. 3, S08002 (2008).

    Google Scholar 

  5. 5

    Lüders, G. On the equivalence of invariance under time reversal and under particle–antiparticle conjugation for relativistic field theories. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28N5, 1–17 (1954).

    MathSciNet  MATH  Google Scholar 

  6. 6

    Pauli, W. in Niels Bohr and the Development of Physics (ed. Pauli, W.) 30–51 (Pergamon, 1955).

    Google Scholar 

  7. 7

    Agakishiev, H. et al. (STAR collaboration). Observation of the antimatter helium-4 nucleus. Nature 473, 353–356 (2011).

    ADS  Article  Google Scholar 

  8. 8

    Harris, J. W. et al. (Star Collaboration). The STAR experiment at the relativistic heavy ion collider. Nucl. Phys. A 566, 277C–285C (1994).

    ADS  Article  Google Scholar 

  9. 9

    Nagamiya, S. et al. (PHENIX collaboration). PHENIX experiment at RHIC. Nucl. Phys. A 566, 287–298 (1994).

    ADS  Article  Google Scholar 

  10. 10

    Fee, M. S. et al. Measurement of the positronium 1 3S1–2 3S1 interval by continuous-wave two-photon excitation. Phys. Rev. A 48, 192–219 (1993).

    ADS  Article  Google Scholar 

  11. 11

    Van Dyck, R. S. Jr, Schwinberg, P. B. & Dehmelt, H. G. New high-precision comparison of electron and positron g factors. Phys. Rev. Lett. 59, 26–29 (1987).

    ADS  Article  Google Scholar 

  12. 12

    Abe, F. et al. (CDF collaboration). A measurement of the W-boson mass. Phys. Rev. Lett. 65, 2243–2246 (1990).

    ADS  Article  Google Scholar 

  13. 13

    Amole, C. et al. Resonant quantum transitions in trapped antihydrogen atoms. Nature 483, 439–443 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Amole, C. et al. An experimental limit on the charge of antihydrogen. Nature Commun. 5, 3955 (2014).

    ADS  Article  Google Scholar 

  15. 15

    Cresti, M., Pasquali, G., Peruzzo, L., Pinori, C. & Sartori, G. Measurement of the anti-neutron mass. Phys. Lett. B 177, 206–210 (1986).

    ADS  Article  Google Scholar 

  16. 16

    Cresti, M., Pasquali, G., Peruzzo, L., Pinori, C. & Sartori, G. Phys. Lett. B 200, 587–588 (1988); erratum.

  17. 17

    Di Sciacca, J. et al. (ATRAP collaboration). One-particle measurement of the antiproton magnetic moment. Phys. Rev. Lett. 110, 130801 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Ambrosino, F. et al. (KLOE collaboration). Determination of CP and CPT violation parameters in the neutral kaon system using the Bell–Steinberger relation and data from the KLOE experiment. J. High Energy Phys. 0612, 011 (2006).

    Google Scholar 

  19. 19

    Kostelecký, V. A. & Russel, N. Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11–31 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Abelev, B. I. et al. (ALICE collaboration). Performance of the ALICE experiment at the CERN LHC. Int. J. Mod. Phys. A 29, 1430044 (2014).

    ADS  Article  Google Scholar 

  21. 21

    Aamodt, K. et al. (ALICE collaboration). Alignment of the ALICE inner tracking system with cosmic-ray tracks. J. Instrum. 5, P03003 (2010).

    Google Scholar 

  22. 22

    Alme, J. et al. The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events. Nucl. Instrum. Methods A 622, 316–367 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Akindinov, A. et al. Performance of the ALICE time-of-flight detector at the LHC. Eur. Phys. J. Plus 128, 44 (2013).

    Article  Google Scholar 

  24. 24

    Olive, K. A. et al. (Particle data group collaboration). Review of particle physics. Chin. Phys. C 38, 090001 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Mohr, P. J., Taylor, B. N. & Newell, D. B. CODATA recommended values of the fundamental physical constants: 2010. Rev. Mod. Phys. 84, 1527–1605 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Massam, T., Muller, Th., Righini, B., Schneegans, M. & Zichichi, A. Experimental observation of antideuteron production. Nuovo Cimento 39, 10–14 (1965).

    ADS  Article  Google Scholar 

  27. 27

    Dorfan, D. E., Eades, J., Lederman, L. M., Lee, W. & Ting, C. C. Observation of antideuterons. Phys. Rev. Lett. 14, 1003–1006 (1965).

    ADS  Article  Google Scholar 

  28. 28

    Antipov, Yu. M. et al. Observation of antihelium-3. Nucl. Phys. B 31, 235–252 (1971).

    ADS  Article  Google Scholar 

  29. 29

    Denisov, S. P. et al. Measurements of anti-deuteron absorption and stripping cross sections at the momentum 13.3 GeV/c. Nucl. Phys. B 31, 253–260 (1971).

    ADS  Article  Google Scholar 

  30. 30

    Kessler, E. G. Jr et al. The deuteron binding energy and the neutron mass. Phys. Lett. A 255, 221–229 (1999).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: State Committee of Science, World Federation of Scientists (WFS) and Swiss Fonds Kidagan, Armenia; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); National Natural Science Foundation of China (NSFC), the Chinese Ministry of Education (CMOE) and the Ministry of Science and Technology of China (MSTC); Ministry of Education and Youth of the Czech Republic; Danish Natural Science Research Council, the Carlsberg Foundation and the Danish National Research Foundation; The European Research Council under the European Community’s Seventh Framework Programme; Helsinki Institute of Physics and the Academy of Finland; French CNRS-IN2P3, the ‘Region Pays de Loire’, ‘Region Alsace’, ‘Region Auvergne’ and CEA, France; German Bundesministerium fur Bildung, Wissenschaft, Forschung und Technologie (BMBF) and the Helmholtz Association; General Secretariat for Research and Technology, Ministry of Development, Greece; Hungarian Orszagos Tudomanyos Kutatasi Alappgrammok (OTKA) and National Office for Research and Technology (NKTH); Department of Atomic Energy and Department of Science and Technology of the Government of India; Istituto Nazionale di Fisica Nucleare (INFN) and Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’, Italy; MEXT Grant-in-Aid for Specially Promoted Research, Japan; Joint Institute for Nuclear Research, Dubna; National Research Foundation of Korea (NRF); Consejo Nacional de Cienca y Tecnologia (CONACYT), Direccion General de Asuntos del Personal Academico (DGAPA), México; Amerique Latine Formation academique European Commission (ALFA-EC) and the EPLANET Program (European Particle Physics Latin American Network) Stichting voor Fundamenteel Onderzoek der Materie (FOM) and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Research Council of Norway (NFR); National Science Centre, Poland; Ministry of National Education/Institute for Atomic Physics and Consiliul Naional al Cercetrii tiinifice-Executive Agency for Higher Education Research Development and Innovation Funding (CNCS-UEFISCDI)-Romania; Ministry of Education and Science of Russian Federation, Russian Academy of Sciences, Russian Federal Agency of Atomic Energy, Russian Federal Agency for Science and Innovations and The Russian Foundation for Basic Research; Ministry of Education of Slovakia; Department of Science and Technology, South Africa; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), E-Infrastructure shared between Europe and Latin America (EELA), Ministerio de Economía y Competitividad (MINECO) of Spain, Xunta de Galicia (Consellería de Educación), Centro de Aplicaciones Tecnolgicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba, and IAEA (International Atomic Energy Agency); Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW); Ukraine Ministry of Education and Science; United Kingdom Science and Technology Facilities Council (STFC); The United States Department of Energy, the United States National Science Foundation, the State of Texas, and the State of Ohio; Ministry of Science, Education and Sports of Croatia and Unity through Knowledge Fund, Croatia; Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Author information

Affiliations

Consortia

Contributions

All authors have contributed to the publication, being variously involved in the design and the construction of the detectors, in writing software, calibrating subsystems, operating the detectors and acquiring data, and finally analysing the processed data. The ALICE Collaboration members discussed and approved the scientific results. The manuscript was prepared by a subgroup of authors appointed by the collaboration and subject to an internal collaboration-wide review process. All authors reviewed and approved the final version of the manuscript.

Ethics declarations

Competing interests

The author declare no competing financial interests.

Rights and permissions

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

ALICE Collaboration., Adam, J., Adamová, D. et al. Precision measurement of the mass difference between light nuclei and anti-nuclei. Nature Phys 11, 811–814 (2015). https://doi.org/10.1038/nphys3432

Download citation

Further reading

  • Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

    Nature Physics (2020)

  • Tests of discrete symmetries

    • M S Sozzi

    Journal of Physics G: Nuclear and Particle Physics (2020)

  • Searching for Li4¯ via the momentum-correlation function of p¯−He3¯

    • Bao-Shan Xi
    • , Zheng-Qiao Zhang
    • , Song Zhang
    •  & Yu-Gang Ma

    Physical Review C (2020)

  • Protocol for pulsed antihydrogen production in the AEḡIS apparatus

    • I C Tietje
    • , C Amsler
    • , M Antonello
    • , A Belov
    • , G Bonomi
    • , R S Brusa
    • , M Caccia
    • , A Camper
    • , R Caravita
    • , F Castelli
    • , P Cheinet
    • , D Comparat
    • , G Consolati
    • , A Demetrio
    • , L Di Noto
    • , M Doser
    • , M Fanì
    • , R Ferragut
    • , J Fesel
    • , S Gerber
    • , M Giammarchi
    • , A Gligorova
    • , L T Glöggler
    • , F Guatieri
    • , S Haider
    • , A Hinterberger
    • , A Kellerbauer
    • , O Khalidova
    • , D Krasnický
    • , V Lagomarsino
    • , C Malbrunot
    • , L Nowak
    • , S Mariazzi
    • , V Matveev
    • , S R Müller
    • , G Nebbia
    • , P Nedelec
    • , M Oberthaler
    • , E Oswald
    • , D Pagano
    • , L Penasa
    • , V Petracek
    • , L Povolo
    • , F Prelz
    • , M Prevedelli
    • , B Rienäcker
    • , O M Røhne
    • , A Rotondi
    • , H Sandaker
    • , R Santoro
    • , G Testera
    • , V Toso
    • , T Wolz
    • , P Yzombard
    • , C Zimmer
    •  & N Zurlo

    Journal of Physics: Conference Series (2020)

  • Measurement of the Low-Energy Antideuteron Inelastic Cross Section

    • S. Acharya
    • , D. Adamová
    • , A. Adler
    • , J. Adolfsson
    • , M. M. Aggarwal
    • , G. Aglieri Rinella
    • , M. Agnello
    • , N. Agrawal
    • , Z. Ahammed
    • , S. Ahmad
    • , S. U. Ahn
    • , Z. Akbar
    • , A. Akindinov
    • , M. Al-Turany
    • , S. N. Alam
    • , D. S. D. Albuquerque
    • , D. Aleksandrov
    • , B. Alessandro
    • , H. M. Alfanda
    • , R. Alfaro Molina
    • , B. Ali
    • , Y. Ali
    • , A. Alici
    • , N. Alizadehvandchali
    • , A. Alkin
    • , J. Alme
    • , T. Alt
    • , L. Altenkamper
    • , I. Altsybeev
    • , M. N. Anaam
    • , C. Andrei
    • , D. Andreou
    • , A. Andronic
    • , M. Angeletti
    • , V. Anguelov
    • , C. Anson
    • , T. Antičić
    • , F. Antinori
    • , P. Antonioli
    • , N. Apadula
    • , L. Aphecetche
    • , H. Appelshäuser
    • , S. Arcelli
    • , R. Arnaldi
    • , M. Arratia
    • , I. C. Arsene
    • , M. Arslandok
    • , A. Augustinus
    • , R. Averbeck
    • , S. Aziz
    • , M. D. Azmi
    • , A. Badalà
    • , Y. W. Baek
    • , S. Bagnasco
    • , X. Bai
    • , R. Bailhache
    • , R. Bala
    • , A. Balbino
    • , A. Baldisseri
    • , M. Ball
    • , S. Balouza
    • , D. Banerjee
    • , R. Barbera
    • , L. Barioglio
    • , G. G. Barnaföldi
    • , L. S. Barnby
    • , V. Barret
    • , P. Bartalini
    • , C. Bartels
    • , K. Barth
    • , E. Bartsch
    • , F. Baruffaldi
    • , N. Bastid
    • , S. Basu
    • , G. Batigne
    • , B. Batyunya
    • , D. Bauri
    • , J. L. Bazo Alba
    • , I. G. Bearden
    • , C. Beattie
    • , C. Bedda
    • , N. K. Behera
    • , I. Belikov
    • , A. D. C. Bell Hechavarria
    • , F. Bellini
    • , R. Bellwied
    • , V. Belyaev
    • , G. Bencedi
    • , S. Beole
    • , A. Bercuci
    • , Y. Berdnikov
    • , D. Berenyi
    • , R. A. Bertens
    • , D. Berzano
    • , M. G. Besoiu
    • , L. Betev
    • , A. Bhasin
    • , I. R. Bhat
    • , M. A. Bhat
    • , H. Bhatt
    • , B. Bhattacharjee
    • , A. Bianchi
    • , L. Bianchi
    • , N. Bianchi
    • , J. Bielčík
    • , J. Bielčíková
    • , A. Bilandzic
    • , G. Biro
    • , R. Biswas
    • , S. Biswas
    • , J. T. Blair
    • , D. Blau
    • , C. Blume
    • , G. Boca
    • , F. Bock
    • , A. Bogdanov
    • , S. Boi
    • , J. Bok
    • , L. Boldizsár
    • , A. Bolozdynya
    • , M. Bombara
    • , G. Bonomi
    • , H. Borel
    • , A. Borissov
    • , H. Bossi
    • , E. Botta
    • , L. Bratrud
    • , P. Braun-Munzinger
    • , M. Bregant
    • , M. Broz
    • , E. Bruna
    • , G. E. Bruno
    • , M. D. Buckland
    • , D. Budnikov
    • , H. Buesching
    • , S. Bufalino
    • , O. Bugnon
    • , P. Buhler
    • , P. Buncic
    • , Z. Buthelezi
    • , J. B. Butt
    • , S. A. Bysiak
    • , D. Caffarri
    • , A. Caliva
    • , E. Calvo Villar
    • , J. M. M. Camacho
    • , R. S. Camacho
    • , P. Camerini
    • , F. D. M. Canedo
    • , A. A. Capon
    • , F. Carnesecchi
    • , R. Caron
    • , J. Castillo Castellanos
    • , A. J. Castro
    • , E. A. R. Casula
    • , F. Catalano
    • , C. Ceballos Sanchez
    • , P. Chakraborty
    • , S. Chandra
    • , W. Chang
    • , S. Chapeland
    • , M. Chartier
    • , S. Chattopadhyay
    • , S. Chattopadhyay
    • , A. Chauvin
    • , C. Cheshkov
    • , B. Cheynis
    • , V. Chibante Barroso
    • , D. D. Chinellato
    • , S. Cho
    • , P. Chochula
    • , T. Chowdhury
    • , P. Christakoglou
    • , C. H. Christensen
    • , P. Christiansen
    • , T. Chujo
    • , C. Cicalo
    • , L. Cifarelli
    • , L. D. Cilladi
    • , F. Cindolo
    • , M. R. Ciupek
    • , G. Clai
    • , J. Cleymans
    • , F. Colamaria
    • , D. Colella
    • , A. Collu
    • , M. Colocci
    • , M. Concas
    • , G. Conesa Balbastre
    • , Z. Conesa del Valle
    • , G. Contin
    • , J. G. Contreras
    • , T. M. Cormier
    • , Y. Corrales Morales
    • , P. Cortese
    • , M. R. Cosentino
    • , F. Costa
    • , S. Costanza
    • , P. Crochet
    • , E. Cuautle
    • , P. Cui
    • , L. Cunqueiro
    • , D. Dabrowski
    • , T. Dahms
    • , A. Dainese
    • , F. P. A. Damas
    • , M. C. Danisch
    • , A. Danu
    • , D. Das
    • , I. Das
    • , P. Das
    • , P. Das
    • , S. Das
    • , A. Dash
    • , S. Dash
    • , S. De
    • , A. De Caro
    • , G. de Cataldo
    • , J. de Cuveland
    • , A. De Falco
    • , D. De Gruttola
    • , N. De Marco
    • , S. De Pasquale
    • , S. Deb
    • , H. F. Degenhardt
    • , K. R. Deja
    • , A. Deloff
    • , S. Delsanto
    • , W. Deng
    • , P. Dhankher
    • , D. Di Bari
    • , A. Di Mauro
    • , R. A. Diaz
    • , T. Dietel
    • , P. Dillenseger
    • , Y. Ding
    • , R. Divià
    • , D. U. Dixit
    • , Ø. Djuvsland
    • , U. Dmitrieva
    • , A. Dobrin
    • , B. Dönigus
    • , O. Dordic
    • , A. K. Dubey
    • , A. Dubla
    • , S. Dudi
    • , M. Dukhishyam
    • , P. Dupieux
    • , R. J. Ehlers
    • , V. N. Eikeland
    • , D. Elia
    • , B. Erazmus
    • , F. Erhardt
    • , A. Erokhin
    • , M. R. Ersdal
    • , B. Espagnon
    • , G. Eulisse
    • , D. Evans
    • , S. Evdokimov
    • , L. Fabbietti
    • , M. Faggin
    • , J. Faivre
    • , F. Fan
    • , A. Fantoni
    • , M. Fasel
    • , P. Fecchio
    • , A. Feliciello
    • , G. Feofilov
    • , A. Fernández Téllez
    • , A. Ferrero
    • , A. Ferretti
    • , A. Festanti
    • , V. J. G. Feuillard
    • , J. Figiel
    • , S. Filchagin
    • , D. Finogeev
    • , F. M. Fionda
    • , G. Fiorenza
    • , F. Flor
    • , A. N. Flores
    • , S. Foertsch
    • , P. Foka
    • , S. Fokin
    • , E. Fragiacomo
    • , U. Frankenfeld
    • , U. Fuchs
    • , C. Furget
    • , A. Furs
    • , M. Fusco Girard
    • , J. J. Gaardhøje
    • , M. Gagliardi
    • , A. M. Gago
    • , A. Gal
    • , C. D. Galvan
    • , P. Ganoti
    • , C. Garabatos
    • , J. R. A. Garcia
    • , E. Garcia-Solis
    • , K. Garg
    • , C. Gargiulo
    • , A. Garibli
    • , K. Garner
    • , P. Gasik
    • , E. F. Gauger
    • , M. B. Gay Ducati
    • , M. Germain
    • , J. Ghosh
    • , P. Ghosh
    • , S. K. Ghosh
    • , M. Giacalone
    • , P. Gianotti
    • , P. Giubellino
    • , P. Giubilato
    • , A. M. C. Glaenzer
    • , P. Glässel
    • , A. Gomez Ramirez
    • , V. Gonzalez
    • , L. H. González-Trueba
    • , S. Gorbunov
    • , L. Görlich
    • , A. Goswami
    • , S. Gotovac
    • , V. Grabski
    • , L. K. Graczykowski
    • , K. L. Graham
    • , L. Greiner
    • , A. Grelli
    • , C. Grigoras
    • , V. Grigoriev
    • , A. Grigoryan
    • , S. Grigoryan
    • , O. S. Groettvik
    • , F. Grosa
    • , J. F. Grosse-Oetringhaus
    • , R. Grosso
    • , R. Guernane
    • , M. Guittiere
    • , K. Gulbrandsen
    • , T. Gunji
    • , A. Gupta
    • , R. Gupta
    • , I. B. Guzman
    • , R. Haake
    • , M. K. Habib
    • , C. Hadjidakis
    • , H. Hamagaki
    • , G. Hamar
    • , M. Hamid
    • , R. Hannigan
    • , M. R. Haque
    • , A. Harlenderova
    • , J. W. Harris
    • , A. Harton
    • , J. A. Hasenbichler
    • , H. Hassan
    • , Q. U. Hassan
    • , D. Hatzifotiadou
    • , P. Hauer
    • , L. B. Havener
    • , S. Hayashi
    • , S. T. Heckel
    • , E. Hellbär
    • , H. Helstrup
    • , A. Herghelegiu
    • , T. Herman
    • , E. G. Hernandez
    • , G. Herrera Corral
    • , F. Herrmann
    • , K. F. Hetland
    • , H. Hillemanns
    • , C. Hills
    • , B. Hippolyte
    • , B. Hohlweger
    • , J. Honermann
    • , D. Horak
    • , A. Hornung
    • , S. Hornung
    • , R. Hosokawa
    • , P. Hristov
    • , C. Huang
    • , C. Hughes
    • , P. Huhn
    • , T. J. Humanic
    • , H. Hushnud
    • , L. A. Husova
    • , N. Hussain
    • , S. A. Hussain
    • , D. Hutter
    • , J. P. Iddon
    • , R. Ilkaev
    • , H. Ilyas
    • , M. Inaba
    • , G. M. Innocenti
    • , M. Ippolitov
    • , A. Isakov
    • , M. S. Islam
    • , M. Ivanov
    • , V. Ivanov
    • , V. Izucheev
    • , B. Jacak
    • , N. Jacazio
    • , P. M. Jacobs
    • , S. Jadlovska
    • , J. Jadlovsky
    • , S. Jaelani
    • , C. Jahnke
    • , M. J. Jakubowska
    • , M. A. Janik
    • , T. Janson
    • , M. Jercic
    • , O. Jevons
    • , M. Jin
    • , F. Jonas
    • , P. G. Jones
    • , J. Jung
    • , M. Jung
    • , A. Jusko
    • , P. Kalinak
    • , A. Kalweit
    • , V. Kaplin
    • , S. Kar
    • , A. Karasu Uysal
    • , D. Karatovic
    • , O. Karavichev
    • , T. Karavicheva
    • , P. Karczmarczyk
    • , E. Karpechev
    • , A. Kazantsev
    • , U. Kebschull
    • , R. Keidel
    • , M. Keil
    • , B. Ketzer
    • , Z. Khabanova
    • , A. M. Khan
    • , S. Khan
    • , A. Khanzadeev
    • , Y. Kharlov
    • , A. Khatun
    • , A. Khuntia
    • , B. Kileng
    • , B. Kim
    • , B. Kim
    • , D. Kim
    • , D. J. Kim
    • , E. J. Kim
    • , H. Kim
    • , J. Kim
    • , J. S. Kim
    • , J. Kim
    • , J. Kim
    • , J. Kim
    • , M. Kim
    • , S. Kim
    • , T. Kim
    • , T. Kim
    • , S. Kirsch
    • , I. Kisel
    • , S. Kiselev
    • , A. Kisiel
    • , J. L. Klay
    • , C. Klein
    • , J. Klein
    • , S. Klein
    • , C. Klein-Bösing
    • , M. Kleiner
    • , A. Kluge
    • , M. L. Knichel
    • , A. G. Knospe
    • , C. Kobdaj
    • , M. K. Köhler
    • , T. Kollegger
    • , A. Kondratyev
    • , N. Kondratyeva
    • , E. Kondratyuk
    • , J. Konig
    • , S. A. Konigstorfer
    • , P. J. Konopka
    • , G. Kornakov
    • , L. Koska
    • , O. Kovalenko
    • , V. Kovalenko
    • , M. Kowalski
    • , I. Králik
    • , A. Kravčáková
    • , L. Kreis
    • , M. Krivda
    • , F. Krizek
    • , K. Krizkova Gajdosova
    • , M. Krüger
    • , E. Kryshen
    • , M. Krzewicki
    • , A. M. Kubera
    • , V. Kučera
    • , C. Kuhn
    • , P. G. Kuijer
    • , L. Kumar
    • , S. Kundu
    • , P. Kurashvili
    • , A. Kurepin
    • , A. B. Kurepin
    • , A. Kuryakin
    • , S. Kushpil
    • , J. Kvapil
    • , M. J. Kweon
    • , J. Y. Kwon
    • , Y. Kwon
    • , S. L. La Pointe
    • , P. La Rocca
    • , Y. S. Lai
    • , M. Lamanna
    • , R. Langoy
    • , K. Lapidus
    • , A. Lardeux
    • , P. Larionov
    • , E. Laudi
    • , R. Lavicka
    • , T. Lazareva
    • , R. Lea
    • , L. Leardini
    • , J. Lee
    • , S. Lee
    • , S. Lehner
    • , J. Lehrbach
    • , R. C. Lemmon
    • , I. León Monzón
    • , E. D. Lesser
    • , M. Lettrich
    • , P. Lévai
    • , X. Li
    • , X. L. Li
    • , J. Lien
    • , R. Lietava
    • , B. Lim
    • , V. Lindenstruth
    • , A. Lindner
    • , C. Lippmann
    • , M. A. Lisa
    • , A. Liu
    • , J. Liu
    • , S. Liu
    • , W. J. Llope
    • , I. M. Lofnes
    • , V. Loginov
    • , C. Loizides
    • , P. Loncar
    • , J. A. Lopez
    • , X. Lopez
    • , E. López Torres
    • , J. R. Luhder
    • , M. Lunardon
    • , G. Luparello
    • , Y. G. Ma
    • , A. Maevskaya
    • , M. Mager
    • , S. M. Mahmood
    • , T. Mahmoud
    • , A. Maire
    • , R. D. Majka
    • , M. Malaev
    • , Q. W. Malik
    • , L. Malinina
    • , D. Mal’Kevich
    • , P. Malzacher
    • , G. Mandaglio
    • , V. Manko
    • , F. Manso
    • , V. Manzari
    • , Y. Mao
    • , M. Marchisone
    • , J. Mareš
    • , G. V. Margagliotti
    • , A. Margotti
    • , A. Marín
    • , C. Markert
    • , M. Marquard
    • , C. D. Martin
    • , N. A. Martin
    • , P. Martinengo
    • , J. L. Martinez
    • , M. I. Martínez
    • , G. Martínez García
    • , S. Masciocchi
    • , M. Masera
    • , A. Masoni
    • , L. Massacrier
    • , E. Masson
    • , A. Mastroserio
    • , A. M. Mathis
    • , O. Matonoha
    • , P. F. T. Matuoka
    • , A. Matyja
    • , C. Mayer
    • , F. Mazzaschi
    • , M. Mazzilli
    • , M. A. Mazzoni
    • , A. F. Mechler
    • , F. Meddi
    • , Y. Melikyan
    • , A. Menchaca-Rocha
    • , C. Mengke
    • , E. Meninno
    • , A. S. Menon
    • , M. Meres
    • , S. Mhlanga
    • , Y. Miake
    • , L. Micheletti
    • , L. C. Migliorin
    • , D. L. Mihaylov
    • , K. Mikhaylov
    • , A. N. Mishra
    • , D. Miśkowiec
    • , A. Modak
    • , N. Mohammadi
    • , A. P. Mohanty
    • , B. Mohanty
    • , M. Mohisin Khan
    • , Z. Moravcova
    • , C. Mordasini
    • , D. A. Moreira De Godoy
    • , L. A. P. Moreno
    • , I. Morozov
    • , A. Morsch
    • , T. Mrnjavac
    • , V. Muccifora
    • , E. Mudnic
    • , D. Mühlheim
    • , S. Muhuri
    • , J. D. Mulligan
    • , A. Mulliri
    • , M. G. Munhoz
    • , R. H. Munzer
    • , H. Murakami
    • , S. Murray
    • , L. Musa
    • , J. Musinsky
    • , C. J. Myers
    • , J. W. Myrcha
    • , B. Naik
    • , R. Nair
    • , B. K. Nandi
    • , R. Nania
    • , E. Nappi
    • , M. U. Naru
    • , A. F. Nassirpour
    • , C. Nattrass
    • , R. Nayak
    • , T. K. Nayak
    • , S. Nazarenko
    • , A. Neagu
    • , R. A. Negrao De Oliveira
    • , L. Nellen
    • , S. V. Nesbo
    • , G. Neskovic
    • , D. Nesterov
    • , L. T. Neumann
    • , B. S. Nielsen
    • , S. Nikolaev
    • , S. Nikulin
    • , V. Nikulin
    • , F. Noferini
    • , P. Nomokonov
    • , J. Norman
    • , N. Novitzky
    • , P. Nowakowski
    • , A. Nyanin
    • , J. Nystrand
    • , M. Ogino
    • , A. Ohlson
    • , J. Oleniacz
    • , A. C. Oliveira Da Silva
    • , M. H. Oliver
    • , C. Oppedisano
    • , A. Ortiz Velasquez
    • , A. Oskarsson
    • , J. Otwinowski
    • , K. Oyama
    • , Y. Pachmayer
    • , V. Pacik
    • , S. Padhan
    • , D. Pagano
    • , G. Paić
    • , J. Pan
    • , S. Panebianco
    • , P. Pareek
    • , J. Park
    • , J. E. Parkkila
    • , S. Parmar
    • , S. P. Pathak
    • , B. Paul
    • , J. Pazzini
    • , H. Pei
    • , T. Peitzmann
    • , X. Peng
    • , L. G. Pereira
    • , H. Pereira Da Costa
    • , D. Peresunko
    • , G. M. Perez
    • , S. Perrin
    • , Y. Pestov
    • , V. Petráček
    • , M. Petrovici
    • , R. P. Pezzi
    • , S. Piano
    • , M. Pikna
    • , P. Pillot
    • , O. Pinazza
    • , L. Pinsky
    • , C. Pinto
    • , S. Pisano
    • , D. Pistone
    • , M. Płoskoń
    • , M. Planinic
    • , F. Pliquett
    • , M. G. Poghosyan
    • , B. Polichtchouk
    • , N. Poljak
    • , A. Pop
    • , S. Porteboeuf-Houssais
    • , V. Pozdniakov
    • , S. K. Prasad
    • , R. Preghenella
    • , F. Prino
    • , C. A. Pruneau
    • , I. Pshenichnov
    • , M. Puccio
    • , J. Putschke
    • , S. Qiu
    • , L. Quaglia
    • , R. E. Quishpe
    • , S. Ragoni
    • , S. Raha
    • , S. Rajput
    • , J. Rak
    • , A. Rakotozafindrabe
    • , L. Ramello
    • , F. Rami
    • , S. A. R. Ramirez
    • , R. Raniwala
    • , S. Raniwala
    • , S. S. Räsänen
    • , R. Rath
    • , V. Ratza
    • , I. Ravasenga
    • , K. F. Read
    • , A. R. Redelbach
    • , K. Redlich
    • , A. Rehman
    • , P. Reichelt
    • , F. Reidt
    • , X. Ren
    • , R. Renfordt
    • , Z. Rescakova
    • , K. Reygers
    • , A. Riabov
    • , V. Riabov
    • , T. Richert
    • , M. Richter
    • , P. Riedler
    • , W. Riegler
    • , F. Riggi
    • , C. Ristea
    • , S. P. Rode
    • , M. Rodríguez Cahuantzi
    • , K. Røed
    • , R. Rogalev
    • , E. Rogochaya
    • , D. Rohr
    • , D. Röhrich
    • , P. F. Rojas
    • , P. S. Rokita
    • , F. Ronchetti
    • , A. Rosano
    • , E. D. Rosas
    • , K. Roslon
    • , A. Rossi
    • , A. Rotondi
    • , A. Roy
    • , P. Roy
    • , O. V. Rueda
    • , R. Rui
    • , B. Rumyantsev
    • , A. Rustamov
    • , E. Ryabinkin
    • , Y. Ryabov
    • , A. Rybicki
    • , H. Rytkonen
    • , O. A. M. Saarimaki
    • , R. Sadek
    • , S. Sadhu
    • , S. Sadovsky
    • , K. Šafařík
    • , S. K. Saha
    • , B. Sahoo
    • , P. Sahoo
    • , R. Sahoo
    • , S. Sahoo
    • , P. K. Sahu
    • , J. Saini
    • , S. Sakai
    • , S. Sambyal
    • , V. Samsonov
    • , D. Sarkar
    • , N. Sarkar
    • , P. Sarma
    • , V. M. Sarti
    • , M. H. P. Sas
    • , E. Scapparone
    • , J. Schambach
    • , H. S. Scheid
    • , C. Schiaua
    • , R. Schicker
    • , A. Schmah
    • , C. Schmidt
    • , H. R. Schmidt
    • , M. O. Schmidt
    • , M. Schmidt
    • , N. V. Schmidt
    • , A. R. Schmier
    • , J. Schukraft
    • , Y. Schutz
    • , K. Schwarz
    • , K. Schweda
    • , G. Scioli
    • , E. Scomparin
    • , J. E. Seger
    • , Y. Sekiguchi
    • , D. Sekihata
    • , I. Selyuzhenkov
    • , S. Senyukov
    • , D. Serebryakov
    • , A. Sevcenco
    • , A. Shabanov
    • , A. Shabetai
    • , R. Shahoyan
    • , W. Shaikh
    • , A. Shangaraev
    • , A. Sharma
    • , A. Sharma
    • , H. Sharma
    • , M. Sharma
    • , N. Sharma
    • , S. Sharma
    • , O. Sheibani
    • , K. Shigaki
    • , M. Shimomura
    • , S. Shirinkin
    • , Q. Shou
    • , Y. Sibiriak
    • , S. Siddhanta
    • , T. Siemiarczuk
    • , D. Silvermyr
    • , G. Simatovic
    • , G. Simonetti
    • , B. Singh
    • , R. Singh
    • , R. Singh
    • , R. Singh
    • , V. K. Singh
    • , V. Singhal
    • , T. Sinha
    • , B. Sitar
    • , M. Sitta
    • , T. B. Skaali
    • , M. Slupecki
    • , N. Smirnov
    • , R. J. M. Snellings
    • , C. Soncco
    • , J. Song
    • , A. Songmoolnak
    • , F. Soramel
    • , S. Sorensen
    • , I. Sputowska
    • , J. Stachel
    • , I. Stan
    • , P. J. Steffanic
    • , E. Stenlund
    • , S. F. Stiefelmaier
    • , D. Stocco
    • , M. M. Storetvedt
    • , L. D. Stritto
    • , A. A. P. Suaide
    • , T. Sugitate
    • , C. Suire
    • , M. Suleymanov
    • , M. Suljic
    • , R. Sultanov
    • , M. Šumbera
    • , V. Sumberia
    • , S. Sumowidagdo
    • , S. Swain
    • , A. Szabo
    • , I. Szarka
    • , U. Tabassam
    • , S. F. Taghavi
    • , G. Taillepied
    • , J. Takahashi
    • , G. J. Tambave
    • , S. Tang
    • , M. Tarhini
    • , M. G. Tarzila
    • , A. Tauro
    • , G. Tejeda Muñoz
    • , A. Telesca
    • , L. Terlizzi
    • , C. Terrevoli
    • , D. Thakur
    • , S. Thakur
    • , D. Thomas
    • , F. Thoresen
    • , R. Tieulent
    • , A. Tikhonov
    • , A. R. Timmins
    • , A. Toia
    • , N. Topilskaya
    • , M. Toppi
    • , F. Torales-Acosta
    • , S. R. Torres
    • , A. Trifiró
    • , S. Tripathy
    • , T. Tripathy
    • , S. Trogolo
    • , G. Trombetta
    • , L. Tropp
    • , V. Trubnikov
    • , W. H. Trzaska
    • , T. P. Trzcinski
    • , B. A. Trzeciak
    • , A. Tumkin
    • , R. Turrisi
    • , T. S. Tveter
    • , K. Ullaland
    • , E. N. Umaka
    • , A. Uras
    • , G. L. Usai
    • , M. Vala
    • , N. Valle
    • , S. Vallero
    • , N. van der Kolk
    • , L. V. R. van Doremalen
    • , M. van Leeuwen
    • , P. Vande Vyvre
    • , D. Varga
    • , Z. Varga
    • , M. Varga-Kofarago
    • , A. Vargas
    • , M. Vasileiou
    • , A. Vasiliev
    • , O. Vázquez Doce
    • , V. Vechernin
    • , E. Vercellin
    • , S. Vergara Limón
    • , L. Vermunt
    • , R. Vernet
    • , R. Vértesi
    • , L. Vickovic
    • , Z. Vilakazi
    • , O. Villalobos Baillie
    • , G. Vino
    • , A. Vinogradov
    • , T. Virgili
    • , V. Vislavicius
    • , A. Vodopyanov
    • , B. Volkel
    • , M. A. Völkl
    • , K. Voloshin
    • , S. A. Voloshin
    • , G. Volpe
    • , B. von Haller
    • , I. Vorobyev
    • , D. Voscek
    • , J. Vrláková
    • , B. Wagner
    • , M. Weber
    • , S. G. Weber
    • , A. Wegrzynek
    • , S. C. Wenzel
    • , J. P. Wessels
    • , J. Wiechula
    • , J. Wikne
    • , G. Wilk
    • , J. Wilkinson
    • , G. A. Willems
    • , E. Willsher
    • , B. Windelband
    • , M. Winn
    • , W. E. Witt
    • , J. R. Wright
    • , Y. Wu
    • , R. Xu
    • , S. Yalcin
    • , Y. Yamaguchi
    • , K. Yamakawa
    • , S. Yang
    • , S. Yano
    • , Z. Yin
    • , H. Yokoyama
    • , I.-K. Yoo
    • , J. H. Yoon
    • , S. Yuan
    • , A. Yuncu
    • , V. Yurchenko
    • , V. Zaccolo
    • , A. Zaman
    • , C. Zampolli
    • , H. J. C. Zanoli
    • , N. Zardoshti
    • , A. Zarochentsev
    • , P. Závada
    • , N. Zaviyalov
    • , H. Zbroszczyk
    • , M. Zhalov
    • , S. Zhang
    • , X. Zhang
    • , Z. Zhang
    • , V. Zherebchevskii
    • , Y. Zhi
    • , D. Zhou
    • , Y. Zhou
    • , Z. Zhou
    • , J. Zhu
    • , Y. Zhu
    • , A. Zichichi
    • , G. Zinovjev
    •  & N. Zurlo

    Physical Review Letters (2020)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing