Letter | Published:

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Nature Physics volume 11, pages 728732 (2015) | Download Citation

  • An Erratum to this article was published on 01 October 2015

This article has been updated

Abstract

Three-dimensional (3D) topologicalWeyl semimetals (TWSs) represent a state of quantum matter with unusual electronic structures that resemble both a ‘3D graphene’ and a topological insulator. Their electronic structure displays pairs of Weyl points (through which the electronic bands disperse linearly along all three momentum directions) connected by topological surface states, forming a unique arc-like Fermi surface (FS). Each Weyl point is chiral and contains half the degrees of freedom of a Dirac point, and can be viewed as a magnetic monopole in momentum space. By performing angle-resolved photoemission spectroscopy on the non-centrosymmetric compound TaAs, here we report its complete band structure, including the unique Fermi-arc FS and linear bulk band dispersion across the Weyl points, in agreement with the theoretical calculations1,2. This discovery not only confirms TaAs as a 3DTWS, but also provides an ideal platform for realizing exotic physical phenomena (for example, negative magnetoresistance, chiral magnetic effects and the quantum anomalous Hall effect) which may also lead to novel future applications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 03 September 2015

    In the version of this Letter originally published a description of arc-like Fermi surfaces in the abstract contained a typographical error. This error has been corrected in the online versions.

References

  1. 1.

    , , , & Weyl semimetal phase in non-centrosymmetric transition metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  2. 2.

    et al. An inversion breaking Weyl semimetal state in the TaAs material class. Nature Commun. 6, 7373 (2015).

  3. 3.

    & Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  4. 4.

    & Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  5. 5.

    et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

  6. 6.

    Topological crystalline insulators. Phys. Rev. Lett. 106, 106802 (2011).

  7. 7.

    et al. Topological crystalline insulator states in Pb1−xSnxSe. Nature Mater. 11, 1023–1027 (2012).

  8. 8.

    et al. Dirac semimetal and topological phase transitions in A3Bi (A  =  Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

  9. 9.

    et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

  10. 10.

    , , & Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  11. 11.

    , , , & Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

  12. 12.

    & Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

  13. 13.

    & Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86, 115133 (2012).

  14. 14.

    , & Chiral gauge field and axial anomaly in a Weyl semimetal. Phys. Rev. B 87, 235306 (2013).

  15. 15.

    Anomalous transport of Weyl fermions in Weyl semimetals. Phys. Rev. B 89, 075124 (2014).

  16. 16.

    , & Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nature Commun. 5, 5161 (2014).

  17. 17.

    Friedel oscillations due to Fermi arcs in Weyl semimetals. Phys. Rev. B 86, 195102 (2012).

  18. 18.

    & Time-reversal invariant realization of the Weyl semimetal phase. Phys. Rev. B 85, 035103 (2012).

  19. 19.

    et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nature Mater. 13, 677–681 (2014).

  20. 20.

    et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nature Commun. 5, 3786 (2014).

  21. 21.

    et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

  22. 22.

    & Weyl semimetals from noncentrosymmetric topological insulators. Phys. Rev. B 90, 155316 (2014).

  23. 23.

    , & On the arsenides and antimonides of tantalum. Acta Chem. Scand. 19, 95–106 (1965).

  24. 24.

    Studies on the electronic structures of three-dimensional topological insulators by angle resolved photoemission spectroscopy. Front. Phys. 7, 175–192 (2012).

  25. 25.

    et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nature Mater. 14, 280–284 (2015).

  26. 26.

    et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nature Phys. 11, 645–649 (2015).

  27. 27.

    et al. Discovery of a Weyl Fermion semimetal and topological Fermi arcs. Science (2015).

  28. 28.

    et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

  29. 29.

    et al. Experimental observation of Weyl points. Science (2015).

  30. 30.

    & Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  31. 31.

    Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

  32. 32.

    , & Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

Download references

Acknowledgements

Y.L.C. acknowledges the support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105). The Advanced Light Source is operated by the Department of Energy, Office of Basic Energy Science (contract DE-AC02-05CH11231).

Author information

Author notes

    • L. X. Yang
    • , Z. K. Liu
    •  & Y. Sun

    These authors contributed equally to this work.

Affiliations

  1. State Key Laboratory of Low Dimensional Quantum Physics, Collaborative Innovation Center of Quantum Matter and Department of Physics, Tsinghua University, Beijing 100084, China

    • L. X. Yang
    • , T. Zhang
    •  & Y. L. Chen
  2. Physics Department, Oxford University, Oxford OX1 3PU, UK

    • L. X. Yang
    • , H. Peng
    • , H. F. Yang
    • , T. Zhang
    • , B. Zhou
    • , Y. F. Guo
    • , M. Rahn
    • , D. Prabhakaran
    •  & Y. L. Chen
  3. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • L. X. Yang
    • , B. Zhou
    • , Y. Zhang
    • , Z. Hussain
    •  & S.-K. Mo
  4. Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, UK

    • Z. K. Liu
    •  & Y. L. Chen
  5. School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China

    • Z. K. Liu
    • , B. Yan
    •  & Y. L. Chen
  6. Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany

    • Y. Sun
    • , C. Felser
    •  & B. Yan
  7. State Key Laboratory of Functional Materials for Informatics, SIMIT, Chinese Academy of Sciences, Shanghai 200050, China

    • H. F. Yang

Authors

  1. Search for L. X. Yang in:

  2. Search for Z. K. Liu in:

  3. Search for Y. Sun in:

  4. Search for H. Peng in:

  5. Search for H. F. Yang in:

  6. Search for T. Zhang in:

  7. Search for B. Zhou in:

  8. Search for Y. Zhang in:

  9. Search for Y. F. Guo in:

  10. Search for M. Rahn in:

  11. Search for D. Prabhakaran in:

  12. Search for Z. Hussain in:

  13. Search for S.-K. Mo in:

  14. Search for C. Felser in:

  15. Search for B. Yan in:

  16. Search for Y. L. Chen in:

Contributions

Y.L.C. conceived the experiments. L.X.Y. and Z.K.L. carried out ARPES measurements with the assistance of H.P., H.F.Y., T.Z., B.Z., Y.Z. and S.-K.M. D.P., Y.F.G. and M.R. synthesized and characterized bulk single crystals. B.Y. and Y.S. performed ab initio calculations. All authors contributed to the scientific planning and discussions.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Y. L. Chen.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys3425

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing