Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secondary reconnection sites in reconnection-generated flux ropes and reconnection fronts

Abstract

The primary target of the Magnetospheric MultiScale (MMS) mission is the electron-scale diffusion layer around reconnection sites. Here we study where these regions are found in full three-dimensional simulations. In two dimensions the sites of electron diffusion, defined as the regions where magnetic topology changes and electrons move with respect to the magnetic field lines, are located near the reconnection site. But in three dimensions we find that the reconnection exhaust far from the primary reconnection site also becomes host to secondary reconnection sites. Four diagnostics are used to demonstrate the point: the direct observation of topology impossible without secondary reconnection, the direct measurement of topological field line breakage, the measurement of electron jets emerging from secondary reconnection regions, and the violation of the frozen-in condition. We conclude that secondary reconnection occurs in a large part of the exhaust, providing many more chances for MMS to find itself in the right region to hit its target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Run A. Cycle 15,000 (ωciT = 18.2). Evidence for an interchange-type instability and secondary reconnection sites in magnetic flux ropes produced by reconnection.
Figure 2: Run A. Cycle 15,000 (ωciT = 18.2). Evidence for secondary reconnection in flux ropes formed by reconnection.
Figure 3: Run A. Cycle 15,000 (ωciT = 18.2). Direct topological measure of secondary reconnection in flux ropes produced by a reconnection x-line in the centre of the box.
Figure 4: Run B, Cycle 16,000 (ωciT = 19.4).

Similar content being viewed by others

References

  1. Curtis, S. The Magnetospheric Multiscale Mission: Resolving Fundamental Processes in Space Plasmas: Report of the NASA Science and Technology Definition Team for the Magnetospheric Multiscale (MMS) Mission The Magnetospheric Multiscale Mission Resolving Fundamental Processes in Space Plasmas. (NASA, 1999).

    Google Scholar 

  2. Biskamp, D. Magnetic Reconnection in Plasmas (Cambridge Univ. Press, 2000).

    Book  Google Scholar 

  3. Ren, Y. et al. Experimental verification of the Hall effect during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 95, 055003 (2005).

    Article  ADS  Google Scholar 

  4. Øieroset, M., Phan, T., Fujimoto, M., Lin, R. & Lepping, R. In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature 412, 414–417 (2001).

    Article  ADS  Google Scholar 

  5. Shay, M., Drake, J., Swisdak, M., Dorland, W. & Rogers, B. Inherently three dimensional magnetic reconnection: A mechanism for bursty bulk flows? Geophys. Res. Lett. 30, 1345 (2003).

    Article  ADS  Google Scholar 

  6. Lapenta, G. et al. Kinetic simulations of x-line expansion in 3D reconnection. Geophys. Res. Lett. 33, L10102 (2006).

    Article  ADS  Google Scholar 

  7. Lau, Y.-T. & Finn, J. M. Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines. Astrophys. J. 350, 672–691 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  8. Olshevsky, V., Lapenta, G. & Markidis, S. Energetics of kinetic reconnection in a three-dimensional null-point cluster. Phys. Rev. Lett. 111, 045002 (2013).

    Article  ADS  Google Scholar 

  9. Birn, J. & Priest, E. R. Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  10. Cattell, C. et al. Cluster observations of electron holes in association with magnetotail reconnection and comparison to simulations. J. Geophys. Res. 110, A10211 (2005).

    Article  Google Scholar 

  11. Divin, A., Lapenta, G., Markidis, S., Newman, D. L. & Goldman, M. V. Numerical simulations of separatrix instabilities in collisionless magnetic reconnection. Phys. Plasmas 19, 042110 (2012).

    Article  ADS  Google Scholar 

  12. Lapenta, G., Markidis, S., Divin, A., Newman, D. & Goldman, M. Separatrices: The crux of reconnection. J. Plasma Phys. 81, 1–139 (2014).

    Google Scholar 

  13. Wang, R. et al. Observation of multiple sub-cavities adjacent to single separatrix. Geophys. Res. Lett. 40, 2511–2517 (2013).

    Article  ADS  Google Scholar 

  14. Sitnov, M., Swisdak, M. & Divin, A. Dipolarization fronts as a signature of transient reconnection in the magnetotail. J. Geophys. Res. 114, A04202 (2009).

    Article  ADS  Google Scholar 

  15. Runov, A. et al. THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett. 36, L14106 (2009).

    Article  ADS  Google Scholar 

  16. Eastwood, J. et al. Energy partition in magnetic reconnection in Earths magnetotail. Phys. Rev. Lett. 110, 225001 (2013).

    Article  ADS  Google Scholar 

  17. Gosling, J., Skoug, R., McComas, D. & Smith, C. Direct evidence for magnetic reconnection in the solar wind near 1 AU. J. Geophys. Res. 110, A01107 (2005).

    Article  ADS  Google Scholar 

  18. Daughton, W. et al. Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Phys. 7, 539–542 (2011).

    Article  ADS  Google Scholar 

  19. Hamrin, M. et al. The role of the inner tail to midtail plasma sheet in channeling solar wind power to the ionosphere. J. Geophys. Res. 117, A06310 (2012).

    Article  ADS  Google Scholar 

  20. Angelopoulos, V. et al. Electromagnetic energy conversion at reconnection fronts. Science 341, 1478–1482 (2013).

    Article  ADS  Google Scholar 

  21. Birn, J. & Hesse, M. Energy release and conversion by reconnection in the magnetotail. Ann. Geophys. 23, 3365–3373 (2005).

    Article  ADS  Google Scholar 

  22. Ashour-Abdalla, M. et al. Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nature Phys. 7, 360–365 (2011).

    Article  ADS  Google Scholar 

  23. Lapenta, G., Goldman, M., Newman, D., Markidis, S. & Divin, A. Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection. Phys. Plasmas 21, 055702 (2014).

    Article  ADS  Google Scholar 

  24. Eastwood, J. et al. Observations of multiple x-line structure in the Earth’s magnetotail current sheet: A Cluster case study. Geophys. Res. Lett. 32, L11105 (2005).

    Article  ADS  Google Scholar 

  25. Retinò, A. et al. In situ evidence of magnetic reconnection in turbulent plasma. Nature Phys. 3, 236–238 (2007).

    Article  ADS  Google Scholar 

  26. Eriksson, S., Newman, D., Lapenta, G. & Angelopoulos, V. On the signatures of magnetic islands and multiple x-lines in the solar wind as observed by ARTEMIS and WIND. Plasma Phys. Control. Fusion 56, 064008 (2014).

    Article  ADS  Google Scholar 

  27. Moore, T., Arnoldy, R., Feynman, J. & Hardy, D. Propagating substorm injection fronts. J. Geophys. Res. 86, 6713–6726 (1981).

    Article  ADS  Google Scholar 

  28. Moore, T. et al. Snowplow injection front effects. J. Geophys. Res. 118, 6478–6488 (2013).

    Article  Google Scholar 

  29. Guzdar, P., Hassam, A., Swisdak, M. & Sitnov, M. A simple MHD model for the formation of multiple dipolarization fronts. Geophys. Res. Lett. 37, L20102 (2010).

    Article  ADS  Google Scholar 

  30. Lapenta, G. & Bettarini, L. Self-consistent seeding of the interchange instability in dipolarization fronts. Geophys. Res. Lett. 38, L11102 (2011).

    ADS  Google Scholar 

  31. Lapenta, G. & Bettarini, L. Spontaneous transition to a fast 3D turbulent reconnection regime. Europhys. Lett. 93, 65001 (2011).

    Article  ADS  Google Scholar 

  32. Nakamura, M., Matsumoto, H. & Fujimoto, M. Interchange instability at the leading part of reconnection jets. Geophys. Res. Lett. 29, http://dx.doi.org/10.1029/2001GL013780 (2002).

  33. Pritchett, P. & Coroniti, F. A kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. 115, A06301 (2010).

    ADS  Google Scholar 

  34. Divin, A. et al. Evolution of the lower hybrid drift instability at reconnection jet front. J. Geophys. Res. 120, 2675–2690 (2015).

    Article  Google Scholar 

  35. Runov, A., Angelopoulos, V. & Zhou, X.-Z. Multipoint observations of dipolarization front formation by magnetotail reconnection. J. Geophys. Res. 117, A05230 (2012).

    Article  ADS  Google Scholar 

  36. Divin, A., Khotyaintsev, Y. V., Vaivads, A. & André, M. Lower hybrid drift instability at a dipolarization front. J. Geophys. Res. 120, 1124–1132 (2015).

    Article  Google Scholar 

  37. Goldman, M., Newman, D. & Lapenta, G. What can we learn about magnetotail reconnection from 2D PIC Harris-sheet simulations? Space Sci. Rev. http://dx.doi.org/54z (2015).

  38. Shafranov, V. On equilibrium magnetohydrodynamic configurations. Zh. Eksp. Teor. Fiz. 33, 710–722 (1957).

    Google Scholar 

  39. Kruskal, M. & Tuck, J. The instability of a pinched fluid with a longitudinal magnetic field. Proc. R. Soc. Lond. A 245, 222–237 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  40. Hesse, M. & Schindler, K. A theoretical foundation of general magnetic reconnection. J. Geophys. Res. 93, 5559–5567 (1988).

    Article  ADS  Google Scholar 

  41. Vapirev, A. et al. Formation of a transient front structure near reconnection point in 3-D PIC simulations. J. Geophys. Res. 118, 1435–1449 (2013).

    Article  Google Scholar 

  42. Hamrin, M. et al. Energy conversion regions as observed by Cluster in the plasma sheet. J. Geophys. Res. 116, A00K08 (2011).

    Article  Google Scholar 

  43. Harris, E. G. On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–121 (1962).

    Article  Google Scholar 

  44. Markidis, S., Lapenta, G. & Rizwan-uddin, Multi-scale simulations of plasma with iPIC3D. Math. Comput. Simul. 80, 1509–1519 (2010).

    Article  MathSciNet  Google Scholar 

  45. Lapenta, G., Markidis, S., Divin, A., Goldman, M. & Newman, D. Scales of guide field reconnection at the hydrogen mass ratio. Phys. Plasmas 17, 082106 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present work is supported by NASA MMS Grant No. NNX08AO84G, by Onderzoekfonds KU Leuven (Research Fund KU Leuven), by the Interuniversity Attraction Poles Programme of the Belgian Science Policy Office (IAP P7/08 CHARM) and by the eHeroes project of the European Commission (Grant Agreement No. 284461, eheroes.eu). The simulations and data processing were conducted on NASA (NAS and NCCS) supercomputers and on the Curie, Fermi and SuperMUC supercomputers (provided by four consecutive PRACE research infrastructure Tier-0 grants). S.M. is supported by the Swedish VR grant D621-2013-4309.

Author information

Authors and Affiliations

Authors

Contributions

G.L. designed and performed the simulations and conducted the analysis of the diagnostics. S.M. contributed to the simulation approach and data processing. M.V.G. and D.L.N. contributed to the discussion of the four diagnostics of reconnection, to clarify their meaning and relevance.

Corresponding author

Correspondence to Giovanni Lapenta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapenta, G., Markidis, S., Goldman, M. et al. Secondary reconnection sites in reconnection-generated flux ropes and reconnection fronts. Nature Phys 11, 690–695 (2015). https://doi.org/10.1038/nphys3406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3406

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics