Quantum many-body systems out of equilibrium

Article metrics

Abstract

How do closed quantum many-body systems driven out of equilibrium eventually achieve equilibration? And how do these systems thermalize, given that they comprise so many degrees of freedom? Progress in answering these—and related—questions has accelerated in recent years—a trend that can be partially attributed to success with experiments performing quantum simulations using ultracold atoms and trapped ions. Here we provide an overview of this progress, specifically in studies probing dynamical equilibration and thermalization of systems driven out of equilibrium by quenches, ramps and periodic driving. In doing so, we also address topics such as the eigenstate thermalization hypothesis, typicality, transport, many-body localization and universality near phase transitions, as well as future prospects for quantum simulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Greiner, M., Mandel, O., Hänsch, T. W. & Bloch, I. Collapse and revival of the matter wave field of a Bose–Einstein condensate. Nature 419, 51–54 (2002).

  2. 2

    Calabrese, P. & Cardy, J. Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006).

  3. 3

    Chiara, G. D., Montangero, S., Calabrese, P. & Fazio, R. Entanglement entropy dynamics of Heisenberg chains. J. Stat. Mech. 2006, P03001 (2006).

  4. 4

    Kollath, C., Läuchli, A. & Altman, E. Quench dynamics and non equilibrium phase diagram of the Bose–Hubbard model. Phys. Rev. Lett. 98, 180601 (2007).

  5. 5

    Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).

  6. 6

    Cramer, M., Dawson, C. M., Eisert, J. & Osborne, T. J. Exact relaxation in a class of nonequilibrium quantum lattice systems. Phys. Rev. Lett. 100, 030602 (2008).

  7. 7

    Flesch, A., Cramer, M., McCulloch, I. P., Schollwöck, U. & Eisert, J. Probing local relaxation of cold atoms in optical superlattices. Phys. Rev. A 78, 033608 (2008).

  8. 8

    Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

  9. 9

    Moeckel, M. & Kehrein, S. Interaction quench in the Hubbard model. Phys. Rev. Lett. 100, 175702 (2008).

  10. 10

    Manmana, S. R., Wessel, S., Noack, R. M. & Muramatsu, A. Time evolution of correlations in strongly interacting fermions after a quantum quench. Phys. Rev. B 79, 155104 (2009).

  11. 11

    Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Non-equilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

  12. 12

    Yukalov, V. Equilibration and thermalization in finite quantum systems. Laser Phys. Lett. 8, 485–507 (2011).

  13. 13

    Calabrese, P., Essler, F. H. L. & Fagotti, M. Quantum quench in the transverse-field Ising chain. Phys. Rev. Lett. 106, 227203 (2011).

  14. 14

    Trotzky, S. et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nature Phys. 8, 325–330 (2012).

  15. 15

    Caux, J-S. & Essler, F. H. L. Time evolution of local observables after quenching to an integrable model. Phys. Rev. Lett. 110, 257203 (2013).

  16. 16

    Barmettler, P., Punk, M., Gritsev, V., Demler, E. & Altman, E. Relaxation of antiferromagnetic order in spin-1/2 chains following a quantum quench. Phys. Rev. Lett. 102, 130603 (2009).

  17. 17

    Gogolin, C., Mueller, M. P. & Eisert, J. Absence of thermalization in non-integrable systems. Phys. Rev. Lett. 106, 040401 (2011).

  18. 18

    Cassidy, A. C., Clark, C. W. & Rigol, M. Generalized thermalization in an integrable lattice system. Phys. Rev. Lett. 106, 140405 (2011).

  19. 19

    Cramer, M. & Eisert, J. A quantum central limit theorem for non-equilibrium systems: Exact local relaxation of correlated states. New J. Phys. 12, 055020 (2010).

  20. 20

    Reimann, P. Foundation of statistical mechanics under experimentally realistic conditions. Phys. Rev. Lett. 101, 190403 (2008).

  21. 21

    Linden, N., Popescu, S., Short, A. J. & Winter, A. Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009).

  22. 22

    Short, A. J. & Farrelly, T. C. Quantum equilibration in finite time. New J. Phys. 14, 013063 (2012).

  23. 23

    Reimann, P. & Kastner, M. Equilibration of isolated macroscopic quantum systems. New J. Phys. 14, 043020 (2012).

  24. 24

    Langen, T., Geiger, R., Kuhnert, M., Rauer, B. & Schmiedmayer, J. Local emergence of thermal correlations in an isolated quantum many-body system. Nature Phys. 9, 640–643 (2013).

  25. 25

    Geiger, R., Langen, T., Mazets, I. & Schmiedmayer, J. Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas. New J. Phys. 16, 053034 (2014).

  26. 26

    Torres-Herrera, E. J., Kollmar, D. & Santos, L. F. Relaxation and thermalization of isolated many-body quantum systems. Preprint at http://arXiv.org/abs/1403.6481 (2014).

  27. 27

    Venuti, L. C. & Zanardi, P. Universal time-fluctuations in near-critical out-of-equilibrium quantum dynamics. Phys. Rev. E 89, 022101 (2014).

  28. 28

    Calabrese, P. & Cardy, J. Entanglement and correlation functions following a local quench: A conformal field theory approach. J. Stat. Mech. 2007, P10004 (2007).

  29. 29

    Zangara, P. R. et al. Time fluctuations in isolated quantum systems of interacting particles. Phys. Rev. E 88, 032913 (2013).

  30. 30

    Jurcevic, P. et al. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature 511, 202–205 (2014).

  31. 31

    Del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: Topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

  32. 32

    Braun, S. et al. Emergence of coherence and the dynamics of quantum phase transitions. Preprint at http://arXiv.org/abs/1403.7199 (2014).

  33. 33

    Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

  34. 34

    Dóra, B., Haque, M. & Zaránd, G. Crossover from adiabatic to sudden interaction quench in a Luttinger liquid. Phys. Rev. Lett. 106, 156406 (2011).

  35. 35

    Schützhold, R., Uhlmann, M., Xu, Y. & Fischer, U. R. Sweeping from the superfluid to the Mott phase in the Bose–Hubbard model. Phys. Rev. Lett. 97, 200601 (2006).

  36. 36

    Mossel, J., Palacios, G. & Caux, J-S. Geometric quenches in quantum integrable systems. J. Stat. Mech. 2010, L09001 (2010).

  37. 37

    Alba, V. & Heidrich-Meisner, F. Entanglement spreading after a geometric quench in quantum spin chains. Phys. Rev. B 90, 075144 (2014).

  38. 38

    Bovensiepen, U., Petek, H. & Wolf, M. (eds) Dynamics at Solid State Surfaces and Interfaces (Wiley-VCH, 2010).

  39. 39

    Rigol, M. & Srednicki, M. Alternatives to eigenstate thermalization. Phys. Rev. Lett. 108, 110601 (2012).

  40. 40

    Rigol, M. Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009).

  41. 41

    Steinigeweg, R., Khodja, A., Niemeyer, H., Gogolin, C. & Gemmer, J. Pushing the limits of the eigenstate thermalization hypothesis towards mesoscopic quantum systems. Phys. Rev. Lett. 112, 130403 (2014).

  42. 42

    Beugeling, W., Moessner, R. & Haque, M. Finite-size scaling of eigenstate thermalization. Phys. Rev. E 89, 042112 (2014).

  43. 43

    Riera, A., Gogolin, C. & Eisert, J. Thermalization in nature and on a quantum computer. Phys. Rev. Lett. 108, 080402 (2012).

  44. 44

    Mueller, M. P., Adlam, E., Masanes, L. & Wiebe, N. Thermalization and canonical typicality in translation-invariant quantum lattice systems. Preprint at http://arXiv.org/abs/1312.7420 (2013).

  45. 45

    Altland, A. & Haake, F. Quantum chaos and effective thermalization. Phys. Rev. Lett. 108, 073601 (2012).

  46. 46

    Del Rio, L., Hutter, A., Renner, R. & Wehner, S. Relative thermalization. Preprint at http://arXiv.org/abs/1401.7997 (2014).

  47. 47

    Goldstein, S., Lebowitz, J. L., Tumulka, R. & Zanghì, N. Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006).

  48. 48

    Popescu, S., Short, A. J. & Winter, A. Entanglement and the foundations of statistical mechanics. Nature Phys. 2, 754–758 (2006).

  49. 49

    Caux, J-S. & Mossel, J. Remarks on the notion of quantum integrability. J. Stat. Mech. 2011, P02023 (2011).

  50. 50

    Mussardo, G. Infinite-time average of local fields in an integrable quantum field theory after a quantum quench. Phys. Rev. Lett. 111, 100401 (2013).

  51. 51

    Wouters, B. et al. Quenching the anisotropic Heisenberg chain: Exact solution and generalised Gibbs ensemble predictions. Phys. Rev. Lett. 113, 117202 (2014).

  52. 52

    Pozsgay, B. et al. Correlations after quantum quenches in the XXZ spin chain: Failure of the generalized Gibbs ensemble. Phys. Rev. Lett. 113, 117203 (2014).

  53. 53

    Berges, J., Borsányi, S. & Wetterich, C. Prethermalization. Phys. Rev. Lett. 93, 142002 (2004).

  54. 54

    Marcuzzi, M., Marino, J., Gambassi, A. & Silva, A. Prethermalization in a nonintegrable quantum spin chain after a quench. Phys. Rev. Lett. 111, 197203 (2013).

  55. 55

    Essler, F. H. L., Kehrein, S., Manmana, S. R. & Robinson, N. J. Quench dynamics in a model with tuneable integrability breaking. Phys. Rev. B 89, 165104 (2014).

  56. 56

    Gring, M. et al. Relaxation and pre-thermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

  57. 57

    Hastings, M. B. & Koma, T. Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781–804 (2006).

  58. 58

    Nachtergaele, B. & Sims, R. in New Trends in Mathematical Physics (ed Sidoravic̆ius, V.) 591 (Springer, 2009).

  59. 59

    Bravyi, S., Hastings, M. B. & Verstraete, F. Lieb–Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006).

  60. 60

    Kliesch, M., Gogolin, C. & Eisert, J. in Many-Electron Approaches in Physics, Chemistry and Mathematics (eds Bach, V. & Delle Site, L.) 301–318 (Springer, 2014).

  61. 61

    Calabrese, P. & Cardy, J. Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 2005, P04010 (2005).

  62. 62

    Cheneau, M. et al. Light-cone-like spreading of correlations in a quantum many-body system. Nature 481, 484–487 (2012).

  63. 63

    Hastings, M. B. An area law for one-dimensional quantum systems. J. Stat. Mech. 2007, P08024 (2007).

  64. 64

    Eisert, J., Cramer, M. & Plenio, M. B. Area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277–306 (2010).

  65. 65

    Eisert, J. & Osborne, T. J. General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006).

  66. 66

    Schuch, N., Wolf, M. M., Vollbrecht, K. G. H. & Cirac, J. I. On entropy growth and the hardness of simulating time evolution. New J. Phys. 10, 033032 (2008).

  67. 67

    Orus, R. A practical introduction to tensor networks: Matrix product states and projected entangled pair states. Ann. Phys. 349, 117–158 (2014).

  68. 68

    Bañuls, M. C., Hastings, M. B., Verstraete, F. & Cirac, J. I. Matrix product states for dynamical simulation of infinite chains. Phys. Rev. Lett. 102, 240603 (2009).

  69. 69

    Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

  70. 70

    Troyer, M., Alet, F., Trebst, S. & Wessel, S. Non-local updates for quantum Monte Carlo simulations. AIP Conf. Proc. 690, 156–169 (2003).

  71. 71

    Aoki, H. et al. Non-equilibrium dynamical mean-field theory and its applications. Rev. Mod. Phys. 86, 779–837 (2014).

  72. 72

    Carleo, G., Becca, F., Schiró, M. & Fabrizio, M. Localisation and glassy dynamics of many-body quantum systems. Sci. Rep. 2, 243 (2012).

  73. 73

    Nagaj, D. Fast universal quantum computation with railroad-switch local Hamiltonians. J. Math. Phys. 51, 062201 (2010).

  74. 74

    Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014).

  75. 75

    Langer, S., Heidrich-Meisner, F., Gemmer, J., McCulloch, I. P. & Schollwöck, U. Real-time study of diffusive and ballistic transport in spin- chains using the adaptive time-dependent density matrix renormalization group method. Phys. Rev. B 79, 214409 (2009).

  76. 76

    Schneider, U. et al. Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultra-cold atoms. Nature Phys. 8, 213–218 (2012).

  77. 77

    Ronzheimer, J. P. et al. Expansion dynamics of interacting bosons in homogeneous lattices in one and two dimensions. Phys. Rev. Lett. 110, 205301 (2013).

  78. 78

    Schuch, N., Wolf, M. M., Verstraete, F. & Cirac, J. I. Entropy scaling and simulability by matrix product states. Phys. Rev. Lett. 100, 030504 (2008).

  79. 79

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

  80. 80

    Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (August, 2009).

  81. 81

    Stolz, G. in Entropy and the Quantum II Vol. 552 (eds Sims, R. & Ueltschi, D.) (Am. Math. Soc., 2011).

  82. 82

    Burrell, C. K. & Osborne, T. J. Bounds on information propagation in disordered quantum spin chains. Phys. Rev. Lett. 99, 167201 (2007).

  83. 83

    Hamza, E., Sims, R. & Stolz, G. Dynamical localization in disordered quantum spin systems. Commun. Math. Phys. 315, 215–239 (2012).

  84. 84

    Basko, D., Aleiner, I. & Altshuler, B. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

  85. 85

    Aleiner, I. L., Altshuler, B. L. & Shlyapnikov, G. V. A finite-temperature phase transition for disordered weakly interacting bosons in one dimension. Nature Phys. 6, 900–904 (2010).

  86. 86

    Nandkishore, R. & Huse, D. A. Many body localization and thermalization in quantum statistical mechanics. Preprint at http://arXiv.org/abs/1404.0686 (2014).

  87. 87

    Bauer, B. & Nayak, C. Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech. 2013, P09005 (2013).

  88. 88

    Bardarson, J. H., Pollmann, F. & Moore, J. E. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202 (2012).

  89. 89

    Polkovnikov, A. & Gritsev, V. Breakdown of the adiabatic limit in low-dimensional gapless systems. Nature Phys. 4, 477–481 (2008).

  90. 90

    Ruutu, V. M. H. et al. Vortex formation in neutron-irradiated superfluid 3He as an analogue of cosmological defect formation. Nature 382, 334–336 (1996).

  91. 91

    Ulm, S. et al. Observation of the Kibble–Zurek scaling law for defect formation in ion crystals. Nature Commun. 4, 2290 (2013).

  92. 92

    Pyka, K. et al. Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals. Nature Commun. 4, 2291 (2013).

  93. 93

    Chen, D., White, M., Borries, C. & DeMarco, B. Quantum quench of an atomic Mott insulator. Phys. Rev. Lett. 106, 235304 (2011).

  94. 94

    Bernier, J-S., Poletti, D., Barmettler, P., Roux, G. & Kollath, C. Slow quench dynamics of Mott-insulating regions in a trapped Bose gas. Phys. Rev. A 85, 033641 (2012).

  95. 95

    Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nature Phys. 8, 264–266 (2012).

  96. 96

    Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012).

  97. 97

    Lewenstein, M. et al. Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond. Adv. Phys. 56, 243–379 (2007).

  98. 98

    Meinert, F. et al. Quantum quench in an atomic one-dimensional Ising chain. Phys. Rev. Lett. 111, 053003 (2013).

  99. 99

    Trotzky, S. et al. Suppression of the critical temperature for superfluidity near the Mott transition. Nature Phys. 6, 998–1004 (2010).

  100. 100

    Esslinger, T. Fermi–Hubbard physics with atoms in an optical lattice. Ann. Rev. Condens. Matter Phys. 1, 129–152 (2010).

  101. 101

    Pertot, D. et al. Relaxation dynamics of a Fermi gas in an optical superlattice. Phys. Rev. Lett. 113, 170403 (2014).

  102. 102

    Zohar, E., Cirac, J. I. & Reznik, B. Cold-atom quantum simulator for SU(2) Yang–Mills lattice gauge theory. Phys. Rev. Lett. 110, 125304 (2013).

  103. 103

    Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).

  104. 104

    Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449, 324–327 (2007).

  105. 105

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

  106. 106

    Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nature Commun. 2, 377 (2011).

  107. 107

    Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012).

  108. 108

    Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

  109. 109

    Hauke, P., Cucchietti, F. M., Tagliacozzo, L., Deutsch, I. & Lewenstein, M. Can one trust quantum simulators? Rep. Prog. Phys. 75, 082401 (2012).

  110. 110

    Matti Maricq, M. Application of average Hamiltonian theory to the NMR of solids. Phys. Rev. B 25, 6622–6632 (1982).

  111. 111

    Arimondo, E., Ciampini, D., Eckardt, A., Holthaus, M. & Morsch, O. Kilohertz-driven Bose–Einstein condensates in optical lattices. Adv. At. Mol. Opt. Phys. 61, 515–547 (2012).

  112. 112

    Goldman, N. & Dalibard, J. Periodically-driven quantum systems: Effective Hamiltonians and engineered gauge fields. Phys. Rev. X 4, 031027 (2014).

  113. 113

    Kitagawa, T., Berg, E., Rudner, M. & Demler, E. Topological characterization of periodically driven quantum systems. Phys. Rev. B 82, 235114 (2010).

  114. 114

    Jotzu, G. et al. Experimental realisation of the topological Haldane model. Nature 515, 237–240 (2014).

  115. 115

    Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Preprint at http://arXiv.org/abs/1407.4205 (2014).

  116. 116

    Struck, J., Simonet, J. & Sengstock, K. Spin–orbit coupling in periodically driven optical lattices. Phys. Rev. A 90, 031601 (2014).

  117. 117

    Goldman, N. et al. Direct imaging of topological edge states in cold-atom systems. Proc. Natl Acad. Sci. USA 110, 6736–6741 (2013).

  118. 118

    Lazarides, A., Das, A. & Moessner, R. Periodic thermodynamics of isolated quantum systems. Phys. Rev. Lett. 112, 150401 (2014).

  119. 119

    Endres, M. et al. Single-site- and single-atom-resolved measurement of correlation functions. Science 334, 200–203 (2011).

  120. 120

    Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

  121. 121

    Martín-Martínez, E., Fuentes, I. & Mann, R. B. Using Berry’s phase to detect the Unruh effect at lower accelerations. Phys. Rev. Lett. 107, 131301 (2011).

  122. 122

    Agarwal, K. et al. Chiral prethermalization in supersonically split condensates. Phys. Rev. Lett. 113, 190401 (2014).

  123. 123

    Ritsch, H., Domokos, P., Brennecke, F. & Esslinger, T. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys. 85, 553–601 (2013).

  124. 124

    Linden, N., Popescu, S. & Skrzypczyk, P. How small can thermal machines be? the smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010).

  125. 125

    Gallego, R., Riera, A. & Eisert, J. Correlated thermal machines in the micro-world. New J. Phys. 16, 125009 (2014).

  126. 126

    Hubeny, V. E. & Rangamani, M. A holographic view on physics out of equilibrium. Adv. High Energy Phys. 2010, 297916 (2010).

  127. 127

    Kliesch, M., Gogolin, C., Kastoryano, M. J., Riera, A. & Eisert, J. Locality of temperature. Phys. Rev. X 4, 031019 (2014).

  128. 128

    Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

  129. 129

    Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

  130. 130

    Barontini, G. et al. Controlling the dynamics of an open many-body quantum system with localized dissipation. Phys. Rev. Lett. 110, 035302 (2013).

  131. 131

    Diehl, S., Rico, E., Baranov, M. A. & Zoller, P. Topology by dissipation in atomic quantum wires. Nature Phys. 7, 971–977 (2011).

Download references

Acknowledgements

We would like to thank many colleagues for numerous discussions over the years, as well as E. Bergholtz, E. T. Campbell, A. del Campo, G. Carleo, J-S. Caux, F. Essler, T. Farrelly, M. Giuseppe, U. R. Fischer, M. Rigol, L. F. Santos, G. Takacs, R. Moessner and V. I. Yukalov for comments on the manuscript, and the EU (RAQUEL, SIQS, COST, AQuS), the ERC, the BMBF and the Studienstiftung des Deutschen Volkes for support.

Author information

Correspondence to J. Eisert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eisert, J., Friesdorf, M. & Gogolin, C. Quantum many-body systems out of equilibrium. Nature Phys 11, 124–130 (2015) doi:10.1038/nphys3215

Download citation

Further reading