Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exotic circuit elements from zero-modes in hybrid superconductor–quantum-Hall systems

Abstract

The fractional quantum Hall effect and superconductivity, remarkable phenomena in their own right, can harbour even more exotic physics at their interface. In particular, coupling quantum Hall edges with a superconductor can create emergent excitations known as non-Abelian anyons that trap widely coveted Majorana fermion zero-modes and generalizations thereof. We uncover non-local transport signatures of these zero-modes that not only provide striking experimental signatures of the anyons, but moreover allow one to construct novel circuit elements, including superconducting current and voltage mirrors, fractional charge transistors and flux-based capacitors. Underlying this unusual transport is a phenomenon that we term ‘perfect Andreev conversion’—whereby quasiparticles propagating chirally at the edge reverse their electric charge as a result of hybridization with the zero-modes. Our findings suggest numerous experimental directions in the study of quantum-Hall–superconductor systems hybrids and highlight a fundamentally new application of non-Abelian anyons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zero-modes in 1D ‘wires’.
Figure 2: Andreev reflection and conversion.
Figure 3: Even/odd effect.
Figure 4: Mirror and swap.
Figure 5: Flux capacitor.

Similar content being viewed by others

References

  1. Anderson, P. W. More is different. Science 177, 393–396 (1972).

    Article  ADS  Google Scholar 

  2. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  3. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).

    Article  ADS  Google Scholar 

  4. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  5. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article  ADS  Google Scholar 

  6. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article  ADS  Google Scholar 

  7. Choy, T-P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin–orbit coupling. Phys. Rev. B 84, 195442 (2011).

    Article  ADS  Google Scholar 

  8. Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

    Article  ADS  Google Scholar 

  9. Clarke, D. J., Alicea, J. & Shtengel, K. Exotic non-Abelian anyons from conventional fractional quantum Hall states. Nature Commun. 4, 1348 (2013).

    Article  ADS  Google Scholar 

  10. Lindner, N. H., Berg, E., Refael, G. & Stern, A. Fractionalizing Majorana fermions: Non-Abelian statistics on the edges of abelian quantum Hall states. Phys. Rev. X 2, 041002 (2012).

    Google Scholar 

  11. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Article  ADS  Google Scholar 

  12. Alicea, J. New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012).

    Article  ADS  Google Scholar 

  13. Leijnse, M. & Flensberg, K. Introduction to topological superconductivity and Majorana fermions. Semicond. Sci. Technol. 27, 124003 (2012).

    Article  ADS  Google Scholar 

  14. Stanescu, T. D. & Tewari, S. Majorana fermions in semiconductor nanowires: Fundamentals, modeling, and experiment. J. Phys. Condens. Matter 25, 233201 (2013).

    Article  ADS  Google Scholar 

  15. Cheng, M. Superconducting proximity effect on the edge of fractional topological insulators. Phys. Rev. B 86, 195126 (2012).

    Article  ADS  Google Scholar 

  16. Fendley, P. Parafermionic edge zero modes in Zn-invariant spin chains. J. Stat. Mech. P11020 (2012).

  17. Barkeshli, M. & Qi, X-L. Topological nematic states and non-Abelian lattice dislocations. Phys. Rev. X 2, 031013 (2012).

    Google Scholar 

  18. Vaezi, A. Fractional topological superconductor with fractionalized Majorana fermions. Phys. Rev. B 87, 035132 (2013).

    Article  ADS  Google Scholar 

  19. Oreg, Y., Sela, E. & Stern, A. Fractional helical liquids in quantum wires. Phys. Rev. B 89, 115402 (2014).

    Article  ADS  Google Scholar 

  20. Klinovaja, J. & Loss, D. Parafermions in interacting nanowire bundle. Phys. Rev. Lett. 112, 246403 (2014).

    Article  ADS  Google Scholar 

  21. Klinovaja, J. & Loss, D. Time-reversal invariant parafermions in interacting Rashba nanowires. Phys. Rev. B 90, 045118 (2014).

    Article  ADS  Google Scholar 

  22. Barkeshli, M., Jian, C-M. & Qi, X-L. Twist defects and projective non-Abelian braiding statistics. Phys. Rev. B 87, 045130 (2013).

    Article  ADS  Google Scholar 

  23. Barkeshli, M. & Qi, X-L. Synthetic topological qubits in conventional bilayer quantum Hall systems. Preprint at http://arXiv.org/abs/1302.2673 (2013).

  24. Sengupta, K., Žutić, I., Kwon, H-J., Yakovenko, V. M. & Das Sarma, S. Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors. Phys. Rev. B 63, 144531 (2001).

    Article  ADS  Google Scholar 

  25. Bolech, C. J. & Demler, E. Observing Majorana bound states in p-wave superconductors using noise measurements in tunneling experiments. Phys. Rev. Lett. 98, 237002 (2007).

    Article  ADS  Google Scholar 

  26. Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

    Article  ADS  Google Scholar 

  27. Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 82, 180516 (2010).

    Article  ADS  Google Scholar 

  28. Wimmer, M., Akhmerov, A. R., Dahlhaus, J. P. & Beenakker, C. W. J. Quantum point contact as a probe of a topological superconductor. New J. Phys. 13, 053016 (2011).

    Article  ADS  Google Scholar 

  29. Fidkowski, L., Alicea, J., Lindner, N. H., Lutchyn, R. M. & Fisher, M. P. A. Universal transport signatures of Majorana fermions in superconductor-Luttinger liquid junctions. Phys. Rev. B 85, 245121 (2012).

    Article  ADS  Google Scholar 

  30. Lin, C-H., Sau, J. D. & Das Sarma, S. Zero-bias conductance peak in Majorana wires made of semiconductor/superconductor hybrid structures. Phys. Rev. B 86, 224511 (2012).

    Article  ADS  Google Scholar 

  31. Affleck, I. & Giuliano, D. Topological superconductor–Luttinger liquid junctions. J. Stat. Mech. 2013, P06011 (2013).

    Article  MathSciNet  Google Scholar 

  32. Lutchyn, R. M. & Skrabacz, J. H. Transport properties of topological superconductor–Luttinger liquid junctions: A real-time Keldysh approach. Phys. Rev. B 88, 024511 (2013).

    Article  ADS  Google Scholar 

  33. Nilsson, J., Akhmerov, A. R. & Beenakker, C. W. J. Splitting of a Cooper pair by a pair of Majorana bound states. Phys. Rev. Lett. 101, 120403 (2008).

    Article  ADS  Google Scholar 

  34. Herrmann, L. G. et al. Carbon nanotubes as Cooper-pair beam splitters. Phys. Rev. Lett. 104, 026801 (2010).

    Article  ADS  Google Scholar 

  35. Das, A. et al. High-efficiency Cooper pair splitting demonstrated by two-particle conductance resonance and positive noise cross-correlation. Nature Commun. 3, 1165 (2012).

    Article  ADS  Google Scholar 

  36. Fu, L. & Kane, C. L. Probing neutral Majorana fermion edge modes with charge transport. Phys. Rev. Lett. 102, 216403 (2009).

    Article  ADS  Google Scholar 

  37. Akhmerov, A. R., Nilsson, J. & Beenakker, C. W. J. Electrically detected interferometry of Majorana fermions in a topological insulator. Phys. Rev. Lett. 102, 216404 (2009).

    Article  ADS  Google Scholar 

  38. Kane, C. L. & Fisher, M. P. A. Impurity scattering and transport of fractional quantum Hall edge states. Phys. Rev. B 51, 13449–13466 (1995).

    Article  ADS  Google Scholar 

  39. Wen, X-G. Quantum Field Theory of Many-Body Systems. (Oxford Graduate Texts, Oxford Univ. Press, 2004).

    Google Scholar 

  40. Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton transport and Andreev reflection in a bilayer quantum Hall system. Phys. Rev. Lett. 106, 236807 (2011).

    Article  ADS  Google Scholar 

  41. Mong, R. S. K. et al. Universal topological quantum computation from a superconductor/Abelian quantum Hall heterostructure. Phys. Rev. X 4, 011036 (2014).

    Google Scholar 

  42. Halperin, B. I., Stern, A. & Girvin, S. M. dc voltage step-up transformer based on a bilayer ν = 1 quantum Hall system. Phys. Rev. B 67, 235313 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are indebted to J. P. Eisenstein, M. P. A. Fisher, C. Nayak and A. Stern for numerous enlightening discussions. We also acknowledge funding from the NSF through grants DMR-1341822 (D.J.C. and J.A.) and DMR-0748925 (K.S.); the Alfred P. Sloan Foundation (J.A.); the DARPA QuEST program (K.S.); the Caltech Institute for Quantum Information and Matter, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore Foundation; and the Walter Burke Institute for Theoretical Physics at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

D.J.C. contributed the calculations and devised the circuit elements. The manuscript was written by D.J.C. and J.A., while additional reality checks were provided by J.A. and K.S.

Corresponding author

Correspondence to David J. Clarke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clarke, D., Alicea, J. & Shtengel, K. Exotic circuit elements from zero-modes in hybrid superconductor–quantum-Hall systems. Nature Phys 10, 877–882 (2014). https://doi.org/10.1038/nphys3114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing