Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observation of self-amplifying Hawking radiation in an analogue black-hole laser

Abstract

By a combination of quantum field theory and general relativity, black holes have been predicted to emit Hawking radiation. Observation from an actual black hole is, however, probably extremely difficult, so attention has turned to analogue systems in the search for such radiation. Here, we create a narrow, low density, very low temperature atomic Bose–Einstein condensate, containing an analogue black-hole horizon and an inner horizon, as in a charged black hole. We report the observation of Hawking radiation emitted by this black-hole analogue, which is the output of the black-hole laser formed between the horizons. We also observe the exponential growth of a standing wave between the horizons, which results from interference between the negative-energy partners of the Hawking radiation and the negative-energy particles reflected from the inner horizon. We thus observe self-amplifying Hawking radiation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The black-hole lasing phenomenon and the experimental technique.
Figure 2: The black-hole laser.
Figure 3: The flow velocity, the speed of sound and the initial temperature.
Figure 4: Self-amplifying Hawking radiation.
Figure 5: The exponential growth of the lasing mode.
Figure 6: Time constants, Hawking particle production coefficient and lasing energy.

References

  1. 1

    Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2

    Hawking, S. W. Black hole explosions? Nature 248, 30–31 (1974).

    ADS  Article  Google Scholar 

  3. 3

    Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4

    Page, D. N. Particle emission rates from a black hole: Massless particles from an uncharged, non-rotating hole. Phys. Rev. D 13, 198–206 (1976).

    ADS  Article  Google Scholar 

  5. 5

    Dimopoulos, S. & Landsberg, G. Black holes at the Large Hadron Collider. Phys. Rev. Lett. 87, 161602 (2001).

    ADS  Article  Google Scholar 

  6. 6

    Unruh, W. G. Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981).

    ADS  Article  Google Scholar 

  7. 7

    Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic analog of gravitational black holes in Bose–Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).

    ADS  Article  Google Scholar 

  8. 8

    Barceló, C., Liberati, S. & Visser, M. Analogue gravity from Bose–Einstein condensates. Class. Quantum Gravity 18, 1137–1156 (2001).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    Recati, A., Pavloff, N. & Carusotto, I. Bogoliubov theory of acoustic Hawking radiation in Bose–Einstein condensates. Phys. Rev. A 80, 043603 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Zapata, I., Albert, M., Parentani, R. & Sols, F. Resonant Hawking radiation in Bose–Einstein condensates. New J. Phys. 13, 063048 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Jacobson, T. A. & Volovik, G. E. Event horizons and ergoregions in 3He. Phys. Rev. D 58, 064021 (1998).

    ADS  Article  Google Scholar 

  12. 12

    Schützhold, R. & Unruh, W. G. Hawking radiation in an electromagnetic waveguide? Phys. Rev. Lett. 95, 031301 (2005).

    ADS  Article  Google Scholar 

  13. 13

    Giovanazzi, S. Hawking radiation in sonic black holes. Phys. Rev. Lett. 94, 061302 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14

    Horstmann, B., Reznik, B., Fagnocchi, S. & Cirac, J. I. Hawking radiation from an acoustic black hole on an ion ring. Phys. Rev. Lett. 104, 250403 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Leonhardt, U. & Piwnicki, P. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822–825 (2000).

    ADS  Article  Google Scholar 

  16. 16

    Leonhardt, U. A laboratory analogue of the event horizon using slow light in an atomic medium. Nature 415, 406–409 (2002).

    ADS  Article  Google Scholar 

  17. 17

    Unruh, W. G. & Schützhold, R. On slow light as a black hole analogue. Phys. Rev. D 68, 024008 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Elazar, M., Fleurov, V. & Bar-Ad, S. All-optical event horizon in an optical analog of a Laval nozzle. Phys. Rev. A 86, 063821 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Solnyshkov, D. D., Flayac, H. & Malpuech, G. Black holes and wormholes in spinor polariton condensates. Phys. Rev. B 84, 233405 (2011).

    ADS  Article  Google Scholar 

  20. 20

    Rousseaux, G., Mathis, C., Maïssa, P., Philbin, T. G. & Leonhardt, U. Observation of negative-frequency waves in a water tank: A classical analogue to the Hawking effect? New J. Phys. 10, 053015 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Weinfurtner, S., Tedford, E. W., Penrice, M. C. J., Unruh, W. G. & Lawrence, G. A. Measurement of stimulated Hawking emission in an analogue system. Phys. Rev. Lett. 106, 021302 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    ADS  Article  Google Scholar 

  23. 23

    Belgiorno, F. et al. Hawking radiation from ultrashort laser pulse filaments. Phys. Rev. Lett. 105, 203901 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Unruh, W. & Schützhold, R. Hawking radiation from ‘phase horizons’ in laser filaments? Phys. Rev. D 86, 064006 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Liberati, S., Prain, A. & Visser, M. Quantum vacuum radiation in optical glass. Phys. Rev. D 85, 084014 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012).

    ADS  Article  Google Scholar 

  27. 27

    Gerritsma, R. et al. Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Gerritsma, R. et al. Quantum simulation of the Klein paradox with trapped ions. Phys. Rev. Lett. 106, 060503 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Casanova, J. et al. Quantum simulation of quantum field theories in trapped ions. Phys. Rev. Lett. 107, 260501 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Northup, T. E. & Blatt, R. Quantum information transfer using photons. Nature Photon. 8, 356–363 (2014).

    ADS  Article  Google Scholar 

  31. 31

    Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    ADS  Article  Google Scholar 

  32. 32

    Houck, A. A., Türeci, H. E. & Koch, J. On-chip quantum simulation with superconducting circuits. Nature Phys. 8, 292–299 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Corley, S. & Jacobson, T. Black hole lasers. Phys. Rev. D 59, 124011 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  34. 34

    Leonhardt, U. & Philbin, T. G. in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology (eds Unruh, W. G. & Schutzhöld, R.) 229–245 (Lecture Notes in Physics, Vol. 718, Springer, 2007).

    Google Scholar 

  35. 35

    Coutant, A. & Parentani, R. Black hole lasers, a mode analysis. Phys. Rev. D 81, 084042 (2010).

    ADS  Article  Google Scholar 

  36. 36

    Finazzi, S. & Parentani, R. Black hole lasers in Bose–Einstein condensates. New J. Phys. 12, 095015 (2010).

    ADS  Article  Google Scholar 

  37. 37

    Michel, F. & Parentani, R. Saturation of black hole lasers in Bose–Einstein condensates. Phys. Rev. D 88, 125012 (2013).

    ADS  Article  Google Scholar 

  38. 38

    Balbinot, R., Fabbri, A., Fagnocchi, S., Recati, A. & Carusotto, I. Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes. Phys. Rev. A 78, 021603(R) (2008).

    ADS  Article  Google Scholar 

  39. 39

    Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic black holes in dilute Bose–Einstein condensates. Phys. Rev. A 63, 023611 (2001).

    ADS  Article  Google Scholar 

  40. 40

    Jain, P., Bradley, A. S. & Gardiner, C. W. Quantum de Laval nozzle: Stability and quantum dynamics of sonic horizons in a toroidally trapped Bose gas containing a superflow. Phys. Rev. A 76, 023617 (2007).

    ADS  Article  Google Scholar 

  41. 41

    Lahav, O. et al. Realization of a sonic black hole analog in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 240401 (2010).

    ADS  Article  Google Scholar 

  42. 42

    Shammass, I., Rinott, S., Berkovitz, A., Schley, R. & Steinhauer, J. Phonon dispersion relation of an atomic Bose–Einstein condensate. Phys. Rev. Lett. 109, 195301 (2012).

    ADS  Article  Google Scholar 

  43. 43

    Schley, R. et al. Planck distribution of phonons in a Bose–Einstein condensate. Phys. Rev. Lett. 111, 055301 (2013).

    ADS  Article  Google Scholar 

  44. 44

    Larré, P-É., Recati, A., Carusotto, I. & Pavloff, N. Quantum fluctuations around black hole horizons in Bose–Einstein condensates. Phys. Rev. A 85, 013621 (2012).

    ADS  Article  Google Scholar 

  45. 45

    Macher, J. & Parentani, R. Black-hole radiation in Bose–Einstein condensates. Phys. Rev. A 80, 043601 (2009).

    ADS  Article  Google Scholar 

  46. 46

    Mayoral, C. et al. Acoustic white holes in flowing atomic Bose–Einstein condensates. New J. Phys. 13, 025007 (2011).

    ADS  Article  Google Scholar 

  47. 47

    Carusotto, I., Fagnocchi, S., Recati, A., Balbinot, R. & Fabbri, A. Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates. New J. Phys. 10, 103001 (2008).

    ADS  Article  Google Scholar 

  48. 48

    Coutant, A., Fabbri, A., Parentani, R., Balbinot, R. & Anderson, P. R. Hawking radiation of massive modes and undulations. Phys. Rev. D 86, 064022 (2012).

    ADS  Article  Google Scholar 

  49. 49

    Uhlmann, M., Xu, Y. & Schützhold, R. Aspects of cosmic inflation in expanding Bose–Einstein condensates. New J. Phys. 7, 248 (2005).

    ADS  Article  Google Scholar 

  50. 50

    Weinfurtner, S. Analogue model for an expanding universe. Gen. Relativ. Gravit. 37, 1549–1554 (2005).

    ADS  MathSciNet  Article  Google Scholar 

  51. 51

    Prain, A., Fagnocchi, S. & Liberati, S. Analogue cosmological particle creation: Quantum correlations in expanding Bose–Einstein condensates. Phys. Rev. D 82, 105018 (2010).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

I thank R. Parentani, I. Carusotto, A. Ori and F. Michel for helpful discussions. This work is supported by the Russell Berrie Nanotechnology Institute and the Israel Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jeff Steinhauer.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steinhauer, J. Observation of self-amplifying Hawking radiation in an analogue black-hole laser. Nature Phys 10, 864–869 (2014). https://doi.org/10.1038/nphys3104

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing