Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanoemulsions obtained via bubble-bursting at a compound interface

Abstract

Bursting of bubbles at an air/liquid interface is a familiar occurrence relevant to foam stability, cell cultures in bioreactors and ocean–atmosphere mass transfer. In the latter case, bubble-bursting leads to the dispersal of sea-water aerosols in the surrounding air. Here we show that bubbles bursting at a compound air/oil/water-with-surfactant interface can disperse submicrometre oil droplets in water. Dispersal results from the detachment of an oil spray from the bottom of the bubble towards water during bubble collapse. We provide evidence that droplet size is selected by physicochemical interactions between oil molecules and the surfactants rather than by hydrodynamics. We demonstrate the unrecognized role that this dispersal mechanism may play in the fate of the sea surface microlayer and of pollutant spills by dispersing petroleum in the water column. Finally, our system provides an energy-efficient route, with potential upscalability, for applications in drug delivery, food production and materials science.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Bubble-bursting at an air/oil/water interface.
Figure 2: High-speed observations of the bursting process and schematic descriptions for the dispersal mechanism.
Figure 3: Influence of oil layer thickness (hI), bubble diameter (db), viscosity of oil (ηo) and carbon number of the oil (Nc) on the radius (r) of the submicrometre-sized droplets.
Figure 4: Sketch of different wetting states and formation of petroleum dispersal and polymeric submicrometre particles.

References

  1. 1

    Blanchard, D. C. & Woodcock, A. H. Bubble formation and modification in the sea and its meteorological significance. Tellus 9, 145–158 (1957).

    ADS  Google Scholar 

  2. 2

    Tong, M., Cole, K. & Neethling, S. J. Drainage and stability of 2D foams: Foam behaviour in vertical Hele–Shaw cells. Colloids Surf. A 382, 42–49 (2011).

    Article  Google Scholar 

  3. 3

    Moheimani, N. R., Isdepsky, A., Lisec, J., Raes, E. & Borowitzka, M. A. Coccolithophorid algae culture in closed photobioreactors. Biotechnol. Bioeng. 108, 2078–2087 (2011).

    Article  Google Scholar 

  4. 4

    Wu, J. Evidence of sea spray produced by bursting bubbles. Science 212, 324–326 (1981).

    ADS  Article  Google Scholar 

  5. 5

    Schmitt-Kopplin, P. et al. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols. Biogeosciences 9, 1571–1582 (2012).

    ADS  Article  Google Scholar 

  6. 6

    Duchemin, L., Popinet, S., Josserand, C. & Zaleski, S. Jet formation in bubbles bursting at a free surface. Phys. Fluids 14, 3000–3008 (2002).

    ADS  Article  Google Scholar 

  7. 7

    Bird, J. C., de Ruiter, R., Courbin, L. & Stone, H. A. Daughter bubble cascades produced by folding of ruptured thin films. Nature 465, 759–762 (2010).

    ADS  Article  Google Scholar 

  8. 8

    Lhuissier, H. & Villermaux, E. Bursting bubble aerosols. J. Fluid Mech. 696, 5–44 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Uemura, T., Ueda, Y. & Iguchi, M. Ripples on a rising bubble through an immiscible two-liquid interface generate numerous micro droplets. Europhys. Lett. 92, 34004 (2010).

    ADS  Article  Google Scholar 

  10. 10

    Mukerjee, P. & Mysels, K. J. Critical Micelle Concentrations of Aqueous Surfactant Systems (US National Bureau of Standards; for sale by the Supt of Docs, US Govt Print Off, 1971).

    Book  Google Scholar 

  11. 11

    Boulton-Stone, J. M. & Blake, J. R. Gas-bubbles bursting at a free surface. J. Fluid Mech. 254, 437–466 (1993).

    ADS  Article  Google Scholar 

  12. 12

    Eggers, J. & Villermaux, E. Physics of liquid jets. Rep. Prog. Phys. 71, 036601 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Walstra, P. Principles of emulsion formation. Chem. Eng. Sci. 48, 333–349 (1993).

    Article  Google Scholar 

  14. 14

    Marmottant, P. H. & Villermaux, E. On spray formation. J. Fluid Mech. 498, 73–111 (2004).

    ADS  Article  Google Scholar 

  15. 15

    Wilkinson, K. M., Bain, C. D., Matsubara, H. & Aratono, M. Wetting of surfactant solutions by alkanes. ChemPhysChem 6, 547–555 (2005).

    Article  Google Scholar 

  16. 16

    Ash, P. A., Bain, C. D. & Matsubara, H. Wetting in oil/water/surfactant systems. Curr. Opin. Colloid Interf. 17, 196–204 (2012).

    Article  Google Scholar 

  17. 17

    Kellay, H., Meunier, J. & Binks, B. P. Wetting properties of normal-alkanes on AOT monolayers at the brine–air interface. Phys. Rev. Lett. 69, 1220–1223 (1992).

    ADS  Article  Google Scholar 

  18. 18

    Cheng, Y., Ye, X., Huang, X. D. & Ma, H. R. Reentrant wetting transition on surfactant solution surfaces. J. Chem. Phys. 125, 164709 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Boulton-Stone, J. M. The effect of surfactant on bursting gas-bubbles. J. Fluid Mech. 302, 231–257 (1995).

    ADS  Article  Google Scholar 

  20. 20

    Israelachvili, J. N. Intermolecular and Surface Forces 2nd edn (Academic, 1991).

    Google Scholar 

  21. 21

    Bertrand, E. et al. First-order and critical wetting of alkanes on water. Phys. Rev. Lett. 85, 1282–1285 (2000).

    ADS  Article  Google Scholar 

  22. 22

    Matsubara, H., Aratono, A., Wilkinson, K. M. & Bain, C. D. Lattice model for the wetting transition of alkanes on aqueous surfactant solutions. Langmuir 22, 982–988 (2006).

    Article  Google Scholar 

  23. 23

    Liu, T. & Peter Sheng, Y. Three dimensional simulation of transport and fate of oil spill under wave induced circulation. Mar. Pollut. Bull. 80, 148–159 (2014).

    Article  Google Scholar 

  24. 24

    Wurl, O., Wurl, E., Miller, L., Johnson, K. & Vagle, S. Formation and global distribution of sea-surface microlayers. Biogeosciences 8, 121–135 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Cunliffe, M. et al. Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 109, 104–116 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Brock, C. A., Murphy, D. M., Bahreini, R. & Middlebrook, A. M. Formation and growth of organic aerosols downwind of the Deepwater Horizon oil spill. Geophys. Res. Lett. 38, L17805 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Sellegri, K., O’Dowd, C. D., Yoon, Y. J., Jennings, S. G. & de Leeuw, G. Surfactants and submicron sea spray generation. J. Geophys. Res. 111, D22215 (2006).

    ADS  Article  Google Scholar 

  28. 28

    Arnaudov, L. N., Stoyanov, S. D. & Stuart, M. A. C. Colloid fabrication by co-extrusion. Colloids Surf. A 323, 94–98 (2008).

    Article  Google Scholar 

  29. 29

    Talsma, H., Vansteenbergen, M. J., Borchert, J. C. H. & Crommelin, D. J. A. A novel technique for the one-step preparation of liposomes and nonionic surfactant vesicles without the use of organic solvents. Liposome formation in a continuous gas-stream: The bubble method. J. Pharm. Sci. 83, 276–280 (1994).

    Article  Google Scholar 

  30. 30

    Wang, L. J., Dong, J. F., Chen, J., Eastoe, J. & Li, X. F. Design and optimization of a new self-nanoemulsifying drug delivery system. J. Colloid Interface Sci. 330, 443–448 (2009).

    ADS  Article  Google Scholar 

  31. 31

    Rao, J. & McClements, D. J. Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food Hydrocolloids 29, 326–334 (2012).

    Article  Google Scholar 

  32. 32

    Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B. & Graves, S. M. Nanoemulsions: Formation, structure, and physical properties. J. Phys. Condens. Matter 18, R635–R666 (2006).

    ADS  Article  Google Scholar 

  33. 33

    Solans, C. & Sole, I. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interf. 17, 246–254 (2012).

    Article  Google Scholar 

  34. 34

    Rosen, M. J. & Kunjappu, J. T. Surfactants and Interfacial Phenomena 4th edn (Wiley, 2012).

    Book  Google Scholar 

  35. 35

    Matyjaszewski, K. & Davis, T. P. Handbook of Radical Polymerization 1st edn (Wiley, 2002).

    Book  Google Scholar 

  36. 36

    Russev, S. C. & Arguirov, T. V. Rotating analyzer–fixed analyzer ellipsometer based on null type ellipsometer. Rev. Sci. Instrum. 70, 3077–3082 (1999).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the contribution of S. C. Russev from Department of Solid State Physics & Microelectronics, Sofia University, Bulgaria, who helped us with the interpretation of the ellipsometric data and R. D. Stanimirova from Department of Chemical Engineering, Sofia University, Bulgaria, who performed measurements in a Langmuir trough and some spreading experiments. We also acknowledge R. K. Prud’homme from Department of Chemical and Biological Engineering (Princeton University) for the use of the Malvern Zetasizer. T.D.G. and S.D.S. acknowledge the financial support of EU project FP7-REGPOT-2011-1, ‘Beyond Everest’. M.R. acknowledges D. Langevin for fruitful discussions. This research was made possible in part by the CMEDS grant from BP/The Gulf of Mexico Research Initiative.

Author information

Affiliations

Authors

Contributions

J.F., M.R., L.N.A., S.D.S. and H.A.S. conceived of and planned the experiments. J.F. executed the experimental work. J.F., M.R. and H.A.S. wrote the manuscript. J.F. and D.V. analysed the DLS data. J.F., M.R., L.N.A., S.D.S., T.D.G. and H.A.S. analysed and interpreted the experimental results. T.D.G. and G.G.T. performed ellipsometry measurements. All authors reviewed the manuscript.

Corresponding author

Correspondence to Howard A. Stone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2276 kb)

Supplementary Movie

Supplementary Movie 1 (AVI 296 kb)

Supplementary Movie

Supplementary Movie 2 (AVI 421 kb)

Supplementary Movie

Supplementary Movie 3 (AVI 19344 kb)

Supplementary Movie

Supplementary Movie 4 (AVI 4710 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Roché, M., Vigolo, D. et al. Nanoemulsions obtained via bubble-bursting at a compound interface. Nature Phys 10, 606–612 (2014). https://doi.org/10.1038/nphys3003

Download citation

Further reading

Search

Quick links