Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spin and pseudospins in layered transition metal dichalcogenides



The recent emergence of two-dimensional layered materials — in particular the transition metal dichalcogenides — provides a new laboratory for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. These degrees of freedom are the real electron spin, the layer pseudospin, and the valley pseudospin. New methods for the quantum control of the spin and these pseudospins arise from the existence of Berry phase-related physical properties and strong spin–orbit coupling. The former leads to the versatile control of the valley pseudospin, whereas the latter gives rise to an interplay between the spin and the pseudospins. Here, we provide a brief review of both theoretical and experimental advances in this field.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: 2D hexagonal lattice and valley physics.
Figure 2: Electrostatic charging effects of 2D excitons.
Figure 3: Demonstration of valley polarization and valley coherence.
Figure 4: Spin, valley, and layer pseudospin coupling.
Figure 5: Spectroscopic evidence of coupling between spin and layer pseudospin.


  1. 1

    Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    ADS  Article  Google Scholar 

  2. 2

    J Ohkawa, F. & Uemura, Y. Theory of valley splitting in an N-channel (100) inversion layer of Si III. Enhancement of splittings by many-body effects. J. Phys. Soc. Jpn 43, 925–932 (1977).

    ADS  Article  Google Scholar 

  3. 3

    Sham, L., Allen, S., Kamgar, A. & Tsui, D. Valley–valley splitting in inversion layers on a high-index surface of silicon. Phys. Rev. Lett. 40, 472–475 (1978).

    ADS  Article  Google Scholar 

  4. 4

    Bloss, W., Sham, L. & Vinter, V. Interaction-induced transition at low densities in silicon inversion layer. Phys. Rev. Lett. 43, 1529–1532 (1979).

    ADS  Article  Google Scholar 

  5. 5

    Sham, L. & Nakayama, M. Effective-mass approximation in the presence of an interface. Phys. Rev. B 20, 734–747 (1979).

    ADS  Article  Google Scholar 

  6. 6

    Gunawan, O., Habib, B., De Poortere, E. & Shayegan, M. Quantized conductance in an AlAs two-dimensional electron system quantum point contact. Phys. Rev. B 74, 155436 (2006).

    ADS  Article  Google Scholar 

  7. 7

    Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    ADS  Article  Google Scholar 

  8. 8

    Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    ADS  Article  Google Scholar 

  9. 9

    Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008).

    ADS  Article  Google Scholar 

  10. 10

    Bishop, N. et al. Valley polarization and susceptibility of composite fermions around a filling factor ν = 32. Phys. Rev. Lett. 98, 266404 (2007).

    ADS  Article  Google Scholar 

  11. 11

    Shkolnikov, Y., De Poortere, E., Tutuc, E. & Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 89, 226805 (2002).

    ADS  Article  Google Scholar 

  12. 12

    Takashina, K., Ono, Y., Fujiwara, A., Takahashi, Y. & Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96, 236801 (2006).

    ADS  Article  Google Scholar 

  13. 13

    Karch, J. et al. Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors. Phys. Rev. B 83, 121312 (2011).

    ADS  Article  Google Scholar 

  14. 14

    Isberg, J. et al. Generation, transport and detection of valley-polarized electrons in diamond. Nature Mater. 12, 760–764 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Zhu, Z., Collaudin, A., Fauqué, B., Kang, W. & Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nature Phys. 8, 89–94 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    ADS  Article  Google Scholar 

  18. 18

    Gunlycke, D. & White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Jiang, Y., Low, T., Chang, K., Katsnelson, M. & Guinea, F. Generation of pure bulk valley current in graphene. Phys. Rev. Lett. 110, 046601 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    ADS  Article  Google Scholar 

  21. 21

    Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnol. 7, 494–498 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnol. 7, 490–493 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotechnol. 8, 634–638 (2013).

    ADS  Article  Google Scholar 

  25. 25

    Xiao, D., Chang, M-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  26. 26

    Mattheiss, L. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973).

    ADS  Article  Google Scholar 

  27. 27

    Ezawa, M. Spin-valley optical selection rule and strong circular dichroism in silicene. Phys. Rev. B 86, 161407 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011).

    ADS  Article  Google Scholar 

  29. 29

    Jung, J., Zhang, F., Qiao, Z. & MacDonald, A. H. Valley-Hall kink and edge states in multilayer graphene. Phys. Rev. B 84, 075418 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Ezawa, M. Topological Kirchhoff law and bulk-edge correspondence for valley Chern and spin-valley Chern numbers. Phys. Rev. B 88, 161406 (2013).

    ADS  Article  Google Scholar 

  31. 31

    Wu, G. Y., Lue, N-Y. & Chang, L. Graphene quantum dots for valley-based quantum computing: A feasibility study. Phys. Rev. B 84, 195463 (2011).

    ADS  Article  Google Scholar 

  32. 32

    Wu, G. Y. & Lue, N-Y. Graphene-based qubits in quantum communications. Phys. Rev. B 86, 045456 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Lee, M-K., Lue, N-Y., Wen, C-K. & Wu, G. Y. Valley-based field-effect transistors in graphene. Phys. Rev. B 86, 165411 (2012).

    ADS  Article  Google Scholar 

  34. 34

    Wu, S. et al. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7, 2768–2772 (2013).

    Article  Google Scholar 

  35. 35

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    ADS  Article  Google Scholar 

  36. 36

    Mak, K., Lui, C., Shan, J. & Heinz, T. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009).

    ADS  Article  Google Scholar 

  37. 37

    Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007).

    Article  Google Scholar 

  38. 38

    Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009).

    ADS  Article  Google Scholar 

  39. 39

    Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    ADS  Article  Google Scholar 

  40. 40

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    ADS  Article  Google Scholar 

  41. 41

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Article  Google Scholar 

  42. 42

    Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

    ADS  Article  Google Scholar 

  43. 43

    Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nature Nanotechnol. 9, 111–115 (2014).

    ADS  Article  Google Scholar 

  44. 44

    Peelaers, H. & Van de Walle, C. G. Effects of strain on band structure and effective masses in MoS2 . Phys. Rev. B 86, 241401 (2012).

    ADS  Article  Google Scholar 

  45. 45

    Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012).

    ADS  Article  Google Scholar 

  46. 46

    Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013).

    ADS  Article  Google Scholar 

  47. 47

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013).

    ADS  Article  Google Scholar 

  48. 48

    Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotechnol. 8, 271–276 (2013).

    ADS  Article  Google Scholar 

  49. 49

    Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013).

    ADS  Article  Google Scholar 

  50. 50

    Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013).

    ADS  Article  Google Scholar 

  51. 51

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013).

    ADS  Article  Google Scholar 

  52. 52

    Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013).

    ADS  Article  Google Scholar 

  53. 53

    Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 . Phys. Rev. B 88, 121301 (2013).

    ADS  Article  Google Scholar 

  54. 54

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 2931–2936 (2013).

  55. 55

    Thilagam, A. Two-dimensional charged-exciton complexes. Phys. Rev. B 55, 7804–7808 (1997).

    ADS  Article  Google Scholar 

  56. 56

    Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    ADS  Article  Google Scholar 

  57. 57

    Feng, J., Qian, X., Huang, C-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photonics 6, 866–872 (2012).

    ADS  Article  Google Scholar 

  58. 58

    Shi, H., Pan, H., Zhang, Y-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2 . Phys. Rev. B 87, 155304 (2013).

    ADS  Article  Google Scholar 

  59. 59

    Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012).

    ADS  Article  Google Scholar 

  60. 60

    Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    ADS  Article  Google Scholar 

  61. 61

    Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    ADS  Article  Google Scholar 

  62. 62

    Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014).

    ADS  Article  Google Scholar 

  63. 63

    Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

    Article  Google Scholar 

  64. 64

    Sim, S. et al. Exciton dynamics in atomically thin MoS2: Inter-excitonic interaction and broadening kinetics. Preprint at (2013).

  65. 65

    Kumar, N. et al. Exciton-exciton annihilation in MoSe2 monolayers. Preprint at (2013).

  66. 66

    Mai, C. et al. Many body effects in valleytronics: Direct measurement of valley lifetimes in single layer MoS2 . Nano Lett. 14, 202–206 (2013).

    ADS  Article  Google Scholar 

  67. 67

    Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

    ADS  Article  Google Scholar 

  68. 68

    Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nature Phys. 9, 149–153 (2013).

    ADS  Article  Google Scholar 

  69. 69

    Coehoorn, R., Haas, C. & de Groot, R. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35, 6203–6206 (1987).

    ADS  Article  Google Scholar 

  70. 70

    Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

    Article  Google Scholar 

  71. 71

    Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).

    Article  Google Scholar 

  72. 72

    Kośmider, K. & Fernández-Rossier, J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B 87, 075451 (2013).

    ADS  Article  Google Scholar 

  73. 73

    Song, Y. & Dery, H. Transport Theory of Monolayer Transition-Metal Dichalcogenides through symmetry. Phys. Rev. Lett. 111, 026601 (2013).

    ADS  Article  Google Scholar 

  74. 74

    Kormányos, A. et al. Phys. Rev. B 88, 045416 (2013).

    ADS  Article  Google Scholar 

  75. 75

    Feng, W. et al. Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: A first-principles study. Phys. Rev. B 86, 165108 (2012).

    ADS  Article  Google Scholar 

  76. 76

    Liu, G-B., Shan, W-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

    ADS  Article  Google Scholar 

  77. 77

    Lu, H-Z., Yao, W., Xiao, D. & Shen, S-Q. Intervalley scattering and localization behaviors of spin–valley coupled Dirac fermions. Phys. Rev. Lett. 110, 016806 (2013).

    ADS  Article  Google Scholar 

  78. 78

    Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 15 (2013).

    Article  Google Scholar 

  79. 79

    Jones, A. M. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nature Phys. 10, 130–134 (2014).

    ADS  Article  Google Scholar 

  80. 80

    Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013).

    ADS  Article  Google Scholar 

  81. 81

    Zhao, W. et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2 . Nano Lett. 13, 5627–5634 (2013).

    ADS  Article  Google Scholar 

  82. 82

    Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

    ADS  Article  Google Scholar 

  83. 83

    Kikkawa, J. M. Room-temperature spin memory in two-dimensional electron gases. Science 277, 1284–1287 (1997).

    Article  Google Scholar 

  84. 84

    Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001).

    ADS  Article  Google Scholar 

  85. 85

    Mak, Kin, Fai, McGill, K. L., Park, J. & McEuen, P. L. Observation of the valley Hall effect. Preprint at (2014).

  86. 86

    Li, X., Zhang, F. & Niu, Q. Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: Application to an isolated MoS2 trilayer. Phys. Rev. Lett. 110, 066803 (2013).

    ADS  Article  Google Scholar 

  87. 87

    Popov, I., Seifert, G. & Tománek, D. Designing electrical contacts to MoS2 monolayers: A computational Study. Phys. Rev. Lett. 108, 156802 (2012).

    ADS  Article  Google Scholar 

  88. 88

    Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nature Mater. 12, 815–820 (2013).

    ADS  Article  Google Scholar 

  89. 89

    Das, S., Chen, H-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    ADS  Article  Google Scholar 

  90. 90

    Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    ADS  Article  Google Scholar 

  91. 91

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2 . Nano Lett. 13, 4212–4216 (2013).

    ADS  Article  Google Scholar 

  92. 92

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  93. 93

    Klinovaja, J. & Loss, D. Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 88, 075404 (2013).

    ADS  Article  Google Scholar 

Download references


This work was supported by DoE BES DE-SC0008145 and NSF DMR-1150719 (XX), Croucher Foundation under the Croucher Innovation Award, and the RGC (HKU705513P, HKU8/CRF/11G) and UGC (AoE/P-04/08) of Hong Kong (WY), DoE BES Materials Sciences and Engineering Division (DX), and NSF DMR-1106172 (TH).

Author information




X.X. and W.Y. wrote the paper that was examined and improved by all authors.

Corresponding authors

Correspondence to Xiaodong Xu or Wang Yao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Yao, W., Xiao, D. et al. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys 10, 343–350 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing