Consistent thermostatistics forbids negative absolute temperatures


Over the past 60 years, a considerable number of theories and experiments have claimed the existence of negative absolute temperature in spin systems and ultracold quantum gases. This has led to speculation that ultracold gases may be dark-energy analogues and also suggests the feasibility of heat engines with efficiencies larger than one. Here, we prove that all previous negative temperature claims and their implications are invalid as they arise from the use of an entropy definition that is inconsistent both mathematically and thermodynamically. We show that the underlying conceptual deficiencies can be overcome if one adopts a microcanonical entropy functional originally derived by Gibbs. The resulting thermodynamic framework is self-consistent and implies that absolute temperature remains positive even for systems with a bounded spectrum. In addition, we propose a minimal quantum thermometer that can be implemented with available experimental techniques.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Non-negativity of the absolute temperature in quantum systems with a bounded spectrum.


  1. 1

    Callen, H. B. Thermodynamics and an Introduction to Thermostatics (Wiley, 1985).

    Google Scholar 

  2. 2

    Ramsay, N. F. Thermodynamics and statistical mechanics at negative absolute temperatures. Phys. Rev. 103, 20–28 (1956).

    ADS  Article  Google Scholar 

  3. 3

    Landsberg, P. T. Heat engines and heat pumps at positive and negative absolute temperature. J. Phys. A 10, 1773–1780 (1977).

    ADS  Article  Google Scholar 

  4. 4

    Rapp, A., Mandt, S. & Rosch, A. Equilibration rates and negative absolute temperatures for ultracold atoms in optical lattices. Phys. Rev. Lett. 105, 220405 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Purcell, E. M. & Pound, R. V. A nuclear spin system at negative temperature. Phys. Rev. 81, 279–280 (1951).

    ADS  Article  Google Scholar 

  6. 6

    Hakonen, P. & Lounasmaa, O. V. Negative absolute temperature—hot spins in spontaneous magnetic order. Science 265, 1821–1825 (1994).

    ADS  Article  Google Scholar 

  7. 7

    Braun, S. et al. Negative absolute temperature for motional degrees of freedom. Science 339, 52–55 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Peebles, P. J. & Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559–606 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    Loeb, A. Thinking outside the simulation box. Nature Phys. 9, 384–386 (2013).

    ADS  Article  Google Scholar 

  10. 10

    Carr, L. D. Negative temperatures? Science 339, 42–43 (2013).

    ADS  Article  Google Scholar 

  11. 11

    Sommerfeld, A. Vorlesungen über Theoretische Physik (Band 5): Thermodynamik und Statistik 181–183 (Verlag Harri Deutsch, 2011).

    Google Scholar 

  12. 12

    Khinchin, A. I. Mathematical Foundations of Statistical Mechanics (Dover, 1949).

    Google Scholar 

  13. 13

    Huang, K. Statistical Mechanics 2nd edn (Wiley, 1987).

    Google Scholar 

  14. 14

    Gibbs, J. W. Elementary Principles in Statistical Mechanics (Dover, 1960) (Reprint of the 1902 edition).

    Google Scholar 

  15. 15

    Campisi, M., Talkner, P. & Hänggi, P. Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett. 102, 210401 (2009).

    ADS  Article  Google Scholar 

  16. 16

    Campisi, M. & Kobe, D. Derivation of the Boltzmann principle. Am. J. Phys. 78, 608–615 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Dunkel, J. & Hilbert, S. Phase transitions in small systems: Microcanonical vs. canonical ensembles. Physica A 370, 390–406 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Votyakov, E V., Hidmi, H. I., De Martino, A. & Gross, D. H. E. Microcanonical mean-field thermodynamics of self-gravitating and rotating systems. Phys. Rev. Lett. 89, 031101 (2002).

    ADS  Article  Google Scholar 

  19. 19

    Becker, R. Theory of Heat (Springer, 1967).

    Google Scholar 

  20. 20

    Campisi, M. Thermodynamics with generalized ensembles: The class of dual orthodes. Physica A 385, 501–517 (2007).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21

    Hertz, P. Über die mechanischen Grundlagen der Thermodynamik. Ann. Phys. (Leipz.) 33 225–274; 537–552 (1910).

  22. 22

    Hoffmann, D. ‘... you can’t say anyone to their face: your paper is rubbish.’ Max Planck as Editor of Annalen der Physik. Ann. Phys. (Berlin) 17, 273–301 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  23. 23

    Einstein, A. Bemerkungen zu den P. Hertzschen Arbeiten:‘Über die mechanischen Grundlagen der Thermodynamik’. Ann. Phys. (Leipz.) 34, 175–176 (1911).

    ADS  Article  Google Scholar 

  24. 24

    Campisi, M. On the mechanical foundations of thermodynamics: The generalized Helmholtz theorem. Stud. Hist. Philos. Mod. Phys. 36, 275–290 (2005).

    MathSciNet  Article  Google Scholar 

  25. 25

    Stanley, R. P. Enumerative Combinatorics 2nd edn, Vol. 1 (Cambridge Studies in Advanced Mathematics, Cambridge Univ. Press, 2000).

    Google Scholar 

  26. 26

    Tremblay, A-M. Comment on ‘Negative Kelvin temperatures: Some anomalies and a speculation’. Am. J. Phys. 44, 994–995 (1975).

    ADS  Article  Google Scholar 

  27. 27

    Dunkel, J., Hänggi, P. & Hilbert, S. Nonlocal observables and lightcone averaging in relativistic thermodynamics. Nature Phys. 5, 741–747 (2009).

    ADS  Article  Google Scholar 

Download references


We thank I. Bloch, W. Hofstetter and U. Schneider for constructive discussions. We are grateful to M. Campisi for pointing out equation (14), and to P. Kopietz, P. Talkner, R. E. Goldstein and, in particular, P. Hänggi for helpful comments.

Author information




All authors contributed to all aspects of this work.

Corresponding author

Correspondence to Jörn Dunkel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 581 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dunkel, J., Hilbert, S. Consistent thermostatistics forbids negative absolute temperatures. Nature Phys 10, 67–72 (2014).

Download citation

Further reading