Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermal nonlinearities in a nanomechanical oscillator


Nano- and micromechanical oscillators with high quality (Q)-factors have gained much attention for their potential application as ultrasensitive detectors. In contrast to micro-fabricated devices, optically trapped nanoparticles in vacuum do not suffer from clamping losses, hence leading to much larger Q-factors. We find that for a levitated nanoparticle the thermal energy suffices to drive the motion of the nanoparticle into the nonlinear regime. First, we experimentally measure and fully characterize the frequency fluctuations originating from thermal motion and nonlinearities. Second, we demonstrate that feedback cooling can be used to mitigate these fluctuations. The high level of control allows us to fully exploit the force-sensing capabilities of the nanoresonator. Our approach offers a force sensitivity of 20 zN Hz−1/2, which is the highest value reported so far at room temperature, sufficient to sense ultraweak interactions, such as non-Newtonian gravity-like forces.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental configuration.
Figure 2: Nonlinearity-induced frequency fluctuations.
Figure 3: Frequency and energy correlation.
Figure 4: Pressure dependence of frequency fluctuations.
Figure 5: Detection of a periodic force gradient using feedback cooling.


  1. Chaste, J. et al. A nanomechanical mass sensor with yoctogram resolution. Nature Nanotech. 7, 301–304 (2012.).

    Article  ADS  Google Scholar 

  2. Yang, Y. T., Callegari, C, Feng, X. L., Ekinci, K. L. & Roukes, M. L. Zeptogram-scale nanomechanical mass sensing. Nano Lett. 6, 583–586 (2006).

    Article  ADS  Google Scholar 

  3. Cleland, A. N. & Roukes, M. L. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    Article  ADS  Google Scholar 

  4. Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    Article  ADS  Google Scholar 

  5. Stipe, B. C., Mamin, H. J., Stowe, T. D., Kenny, T. W. & Rugar, D. Noncontact friction and force fluctuations between closely spaced bodies. Phys. Rev. Lett. 87, 096801 (2001).

    Article  ADS  Google Scholar 

  6. Moser, J. et al. Ultrasensitive force detection with a nanotube mechanical resonator. Nature Nanotech. 8, 493–496 (2013).

    Article  ADS  Google Scholar 

  7. Postma, H. W. Ch., Kozinsky, I., Husain, A. & Roukes, M. L. Dynamic range of nanotube- and nanowire-based electromechanical systems. Appl. Phys. Lett. 86, 223105 (2005).

    Article  ADS  Google Scholar 

  8. Cleland, A. N. & Roukes, M. L. Noise processes in nanomechanical resonators. J. Appl. Phys. 92, 2758–2769 (2002).

    Article  ADS  Google Scholar 

  9. Ekinci, K. L., Yang, Y. T. & Roukes, M. L. Ultimate limits to inertial mass sensing based on nanoelectromechanical systems. J. Appl. Phys. 95, 2682–2689 (2004).

    Article  ADS  Google Scholar 

  10. Ashkin, A. Optical levitation by radiation pressure. Appl. Phys. Lett. 19, 283–285 (1971).

    Article  ADS  Google Scholar 

  11. Gieseler, J., Deutsch, B., Quidant, R. & Novotny, L. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. Phys. Rev. Lett. 109, 103603 (2012).

    Article  ADS  Google Scholar 

  12. Li, T., Kheifets, S. & Raizen, M. Millikelvin cooling of an optically trapped microsphere in vacuum. Nature Phys. 7, 527–530 (2011).

    Article  ADS  Google Scholar 

  13. Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

    Article  ADS  Google Scholar 

  14. Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

    Article  ADS  Google Scholar 

  15. Epstein, P. S. On the resistance experienced by spheres in their motion through gases. Phys. Rev. 22, 710–733 (1923).

    Google Scholar 

  16. O’Hanlon, J. F. A User’s Guide to Vacuum Technology 3rd edn (Wiley, 2003).

    Book  Google Scholar 

  17. Dykman, M. I. & Krivoglaz, M. A. Theory of nonlinear oscillator interacting with a medium. Phys. Rev. 5, 265–441 (1984).

    Google Scholar 

  18. Lifshitz, R. & Cross, M. C. Review of Nonlinear Dynamics and Complexity (Wiley-VCH, 2009).

    Google Scholar 

  19. Dykman, M. I., Mannella, R. R., McClintock, P. V. E., Soskin, S. M. & Stocks, N. G. Noise-induced narrowing of peaks in the power spectra of underdamped nonlinear oscillators. Phys. Rev. A 42, 7041–7049 (1990).

    Article  ADS  Google Scholar 

  20. Neukirch, L. P., Gieseler, J., Quidant, R., Novotny, L. & Nick Vamivakas, A. Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Opt. Lett. 38, 2976–2979 (2013).

    Article  ADS  Google Scholar 

  21. Geiselmann, M. et al. Three-dimensional optical manipulation of a single electron spin. Nature Nanotech. 8, 175–179 (2013).

    Article  ADS  Google Scholar 

  22. Zurita-Sánchez, J., Greffet, J-J. & Novotny, L. Friction forces arising from fluctuating thermal fields. Phys. Rev. A 69, 022902 (2004).

    Article  ADS  Google Scholar 

  23. Knünz, S. et al. Injection locking of a trapped-ion phonon laser. Phys. Rev. Lett. 105, 013004 (2010).

    Article  ADS  Google Scholar 

  24. Arvanitaki, A. & Geraci, A. A. Detecting high-frequency gravitational waves with optically levitated sensors. Phys. Rev. Lett. 110, 071105 (2013).

    Article  ADS  Google Scholar 

  25. Villanueva, L. G. et al. Surpassing fundamental limits of oscillators using nonlinear resonators. Phys. Rev. Lett. 110, 177208 (2013).

    Article  ADS  Google Scholar 

  26. Mertz, J., Marti, O. & Mlynek, J. Regulation of a microcantilever response by force feedback. Appl. Phys. Lett. 62, 2344–2346 (1993).

    Article  ADS  Google Scholar 

  27. Seifert, F., Kwee, P., Heurs, M., Willke, B. & Danzmann, K. Laser power stabilization for second-generation gravitational wave detectors. Opt. Lett. 31, 2000–2002 (2006).

    Article  ADS  Google Scholar 

  28. Geraci, A. A., Papp, S. B. & Kitching, J. Short-range force detection using optically cooled levitated microspheres. Phys. Rev. Lett. 105, 101101 (2010).

    Article  ADS  Google Scholar 

Download references


This research was funded by ETH Zurich, Fundació Privada CELLEX, ERC-QMES (No. 338763) and ERC-Plasmolight (No. 259196). We thank A. Bachtold and M. Spasenović for valuable input and help and Iñaki Gonzalez for his assistance in preparing Fig. 1.

Author information

Authors and Affiliations



J.G. and L.N. developed the set-up. J.G. performed the experiments and analysed the data. L.N. and R.Q. supervised the work. All authors contributed to discussing the results and writing the manuscript.

Corresponding authors

Correspondence to Lukas Novotny or Romain Quidant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1781 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gieseler, J., Novotny, L. & Quidant, R. Thermal nonlinearities in a nanomechanical oscillator. Nature Phys 9, 806–810 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing