Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields

Abstract

Magnetism plays a key role in modern science and technology, but still many open questions arise from the interplay of magnetic many-body interactions. Deeper insight into complex magnetic behaviour and the nature of magnetic phase transitions can be obtained from, for example, model systems of coupled XY and Ising spins. Here, we report on the experimental realization of such a coupled system with ultracold atoms in triangular optical lattices. This is accomplished by imposing an artificial gauge field on the neutral atoms, which acts on them as a magnetic field does on charged particles. As a result, the atoms show persistent circular currents, the direction of which provides an Ising variable. On this, the tunable staggered gauge field, generated by a periodic driving of the lattice, acts as a longitudinal field. Further, the superfluid ground state presents strong analogies with the paradigm example of the fully frustrated XY model on a triangular lattice.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Illustration of the triangular optical lattice, the artificial gauge fluxes, the phase distribution and the mass currents.
Figure 2: Effect of staggered gauge fluxes in momentum space.
Figure 3: Measurement of the statistical distribution of the Ising magnetization.
Figure 4: Magnetization curves obtained via a classical Monte Carlo simulation.
Figure 5: Experimental and theoretical evaluations, related to the U(1) order parameter.

References

  1. 1

    Villain, J. Spin glass with non-random interactions. J. Phys. C 10, 1717–1735 (1977).

    ADS  Article  Google Scholar 

  2. 2

    Yosefin, M. & Domany, E. Phase transitions in fully frustrated spin systems. Phys. Rev. B 32, 1778–1795 (1985).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Choi, M. Y. & Doniach, S. Phase transitions in uniformly frustrated XY models. Phys. Rev. B 31, 4516–4526 (1985).

    ADS  Article  Google Scholar 

  4. 4

    Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  5. 5

    Diep, H. T. (ed.) Frustrated Spin Systems (World Scientific, 2004).

  6. 6

    Hasenbusch, M., Pelissetto, A. & Vicari, E. Multicritical behavior in the fully frustrated XY model and related systems. J. Stat. Mech. 2005, P12002 (December 005).

  7. 7

    Ling, X. S. et al. Nature of phase transitions of superconducting wire networks in a magnetic field. Phys. Rev. Lett. 76, 2989–2992 (1996).

    ADS  Article  Google Scholar 

  8. 8

    Martinoli, P. & Leemann, C. Two dimensional Josephson junction arrays. J. Low Temp. Phys. 118, 699–731 (2000).

    ADS  Article  Google Scholar 

  9. 9

    Affolter, J., Tesei, M., Pastoriza, H., Leemann, C. & Martinoli, P. Observation of Ising-like critical fluctuations in frustrated Josephson junction arrays with modulated coupling energies. Physica C 369, 313–316 (2002).

    ADS  Article  Google Scholar 

  10. 10

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Lewenstein, M., Sanpera, A. & Ahufinger, V. Ultracold Atoms in Optical Lattices Simulating Quantum Many-body Systems (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  12. 12

    Schweikhard, V. et al. Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates. Phys. Rev. Lett. 93, 210403 (2004).

    ADS  Article  Google Scholar 

  13. 13

    Bretin, V., Stock, S., Seurin, Y. & Dalibard, J. Fast rotation of a Bose–Einstein condensate. Phys. Rev. Lett. 92, 050403 (2004).

    ADS  Article  Google Scholar 

  14. 14

    Lin, Y-J., Compton, R. L., Jiménez-Garcìa, K., Porto, J. V. & Spielman, I. B. Synthetic magnetic fields for ultracold neutral atoms. Nature 462, 628–632 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Lin, Y-J. et al. A synthetic electric force acting on neutral atoms. Nature Phys. 7, 531–534 (2011).

    ADS  Article  Google Scholar 

  16. 16

    Aidelsburger, M. et al. Experimental realization of strong effective magnetic fields in an optical lattice. Phys. Rev. Lett. 107, 255301 (2011).

    ADS  Article  Google Scholar 

  17. 17

    Jiménez-García, K. et al. Peierls substitution in an engineered lattice potential. Phys. Rev. Lett. 108, 225303 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    ADS  Article  Google Scholar 

  19. 19

    Struck, J. et al. Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett. 108, 225304 (2012).

    ADS  Article  Google Scholar 

  20. 20

    Becker, C. et al. Ultracold quantum gases in triangular optical lattices. New J. Phys. 12, 065025 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Pitaevskii, Lev. P. & Stringari, S. Bose-Einstein Condensation (Oxford Univ. Press, 2003).

    MATH  Google Scholar 

  22. 22

    Arimondo, E., Ciampini, D., Eckardt, A., Holthaus, M. & Morsch, O. in Advances In Atomic, Molecular, and Optical Physics Vol. 61 (eds Paul Berman, E. A. & Lin, C.) Ch. 10 (Academic, 2012).

    Google Scholar 

  23. 23

    Huang, K., Yang, C. N. & Luttinger, J. M. Imperfect Bose gas with hard-sphere interaction. Phys. Rev. 105, 776–784 (1957).

    ADS  MathSciNet  Article  Google Scholar 

  24. 24

    Korshunov, S. E. Kink pairs unbinding on domain walls and the sequence of phase transitions in fully frustrated XY models. Phys. Rev. Lett. 88, 167007 (2002).

    ADS  Article  Google Scholar 

  25. 25

    Lee, S. & Lee, K-C. Phase transitions in the fully frustrated triangular XY model. Phys. Rev. B 57, 8472–8477 (1998).

    ADS  Article  Google Scholar 

  26. 26

    Capriotti, L., Vaia, R., Cuccoli, A. & Tognetti, V. Phase transitions induced by easy-plane anisotropy in the classical Heisenberg antiferromagnet on a triangular lattice: A Monte Carlo simulation. Phys. Rev. B 58, 273–281 (1998).

    ADS  Article  Google Scholar 

  27. 27

    Okumura, S., Yoshino, H. & Kawamura, H. Spin-chirality decoupling and critical properties of a two-dimensional fully frustrated XY model. Phys. Rev. B 83, 094429 (2011).

    ADS  Article  Google Scholar 

  28. 28

    Obuchi, T. & Kawamura, H. Spin and chiral orderings of the antiferromagnetic XY model on the triangular lattice and their critical properties. J. Phys. Soc. Jpn 81, 054003 (2012).

    ADS  Article  Google Scholar 

  29. 29

    Hauke, P. et al. Non-abelian gauge fields and topological insulators in shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Eckardt, A. et al. Frustrated quantum antiferromagnetism with ultracold bosons in a triangular lattice. Europhys. Lett. 89, 10010 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    ADS  Article  Google Scholar 

  32. 32

    Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    ADS  Article  Google Scholar 

  33. 33

    Greif, D., Uehlinger, T., Jotzu, G., Tarruell, L. & Esslinger, T. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science 340, 1307–1310 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Parker, et al. In situ observation of strongly interacting ferromagnetic domains in a shaken optical lattice. Preprint at http://arxiv.org/abs/1305.5487 (2013).

  35. 35

    Eckardt, A., Weiss, C. & Holthaus, M. Superfluid-insulator transition in a periodically driven optical lattice. Phys. Rev. Lett. 95, 260404 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Deutsche Forschungsgemeinschaft (GRK1355, SFB925) and the Landesexzellenzinitiative Hamburg (supported by the Joachim Herz Stiftung), ERC AdG QUAGATUA, AAII-Hubbard, Spanish MICINN (FIS2008-00784), Catalunya-Caixa, EU Projects AQUTE and NAMEQUAM, the Spanish foundation Universidad.es, the Austrian Science Fund (SFB F40 FOQUS), the DARPA OLE program and the John von Neumann Institute for Computing (NIC) for providing us with computing time on the supercomputers of the Juelich Supercomputing Centre (JSC).

Author information

Affiliations

Authors

Contributions

J. Struck, M.W., C.Ö., P.W., J. Simonet and K.S. proposed the study and performed the experimental work. R.H., P.H., A.E, M.L. and L.M. performed the theoretical work.

All authors discussed the experimental as well as the theoretical results and contributed to writing the manuscript.

Corresponding author

Correspondence to K. Sengstock.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1362 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Struck, J., Weinberg, M., Ölschläger, C. et al. Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields. Nature Phys 9, 738–743 (2013). https://doi.org/10.1038/nphys2750

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing