Are high-temperature superconductors exotic?

Article metrics

Abstract

High-temperature superconductivity in the copper oxides, first discovered twenty years ago, has led researchers on a wide-ranging quest to understand and use this new state of matter. From the start, these materials have been viewed as ‘exotic’ superconductors, for which the term exotic can take on many meanings. The breadth of work that has taken place reflects the fact that they have turned out to be exotic in almost every way imaginable. They exhibit new states of matter (d-wave superconductivity, charge stripes), dramatic manifestations of fluctuating superconductivity, plus a key inspiration and testing ground for new experimental and theoretical techniques.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986).

  2. 2

    Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).

  3. 3

    Sun, G. F., Wong, K. W., Xu, B. R., Xin, Y. & Lu, D. F. Tc enhancement of HgBa2Ca2Cu3O8+δ by Tl substitution. Phys. Lett. A 192, 122–124 (1994).

  4. 4

    Sleight, A. W., Gillson, J. L. & Bierstedt, P. E. High-temperature superconductivity in the BaPb1−xBixO3 systems. Solid State Commun. 17, 27–28 (1975).

  5. 5

    Scalapino, D. J., Loh, E. & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

  6. 6

    Scalapino, D. J. The case for d x 2 − y 2 pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995).

  7. 7

    Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

  8. 8

    Vaknin, D. et al. Antiferromagnetism in La2CuO4−y . Phys. Rev. Lett. 58, 2802–2805 (1987).

  9. 9

    Tranquada, J. M. et al. Neutron-diffraction determination of antiferromagnetic structure of Cu ions in YBa2Cu3O6+x withx=0.0 and 0.15. Phys. Rev. Lett. 60, 156–159 (1988).

  10. 10

    Alff, L. et al. A hidden pseudogap under the ‘dome’ of superconductivity in electron-doped high-temperature superconductors. Nature 422, 698–701 (2003).

  11. 11

    Batlogg, B. et al. Normal state phase diagram of (La,Sr)2CuO4 from charge and spin dynamics. Physica C 235, 130–133 (1994).

  12. 12

    Niedermayer, C. et al. Common phase diagram for antiferromagnetism in La2−xSrxCuO4 and Y1−xCaxBa2Cu3O6 as seen by muon spin rotation. Phys. Rev. Lett. 80, 3843–3846 (1998).

  13. 13

    Thurston, T. R. et al. Neutron scattering study of the magnetic excitations in metallic and superconducting La2−xSrxCuO4−y . Phys. Rev. B 40, 4585–4595 (1989).

  14. 14

    Cheong, S.-W. et al. Incommensurate magnetic fluctuations in La2−xSrxCuO4 . Phys. Rev. Lett. 67, 1791–1794 (1991).

  15. 15

    Mason, T. E., Aeppli, G. & Mook, H. A. Magnetic dynamics of superconducting La1.86Sr0.14CuO4 . Phys. Rev. Lett. 68, 1414–1417 (1992).

  16. 16

    Thurston, T. R. et al. Low-energy incommensurate spin excitations in superconducting La1.85Sr0.15CuO4 . Phys. Rev. B 46, 9128–9131 (1992).

  17. 17

    Hussey, N. Low-energy quasiparticles in high-Tc cuprates. Adv. Phys. 51, 1685–1771 (2002).

  18. 18

    Hussey, N., Abdel-Jawad, M., Carrington, A., Mackenzie, A. & Balicas, L. A coherent three-dimensional fermi surface in a high-transition-temperature superconductor. Nature 425, 814–817 (2003).

  19. 19

    Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

  20. 20

    Tranquada, J. M., Buttrey, D. J., Sachan, V. & Lorenzo, J. E. Simultaneous ordering of holes and spins in La2NiO4.125 . Phys. Rev. Lett. 73, 1003–1006 (1995).

  21. 21

    Sachan, V., Buttrey, D. J., Tranquada, J. M., Lorenzo, J. E. & Shirane, G. Charge and spin ordering in La2−xSrxNiO4.00 withx=0.135 and 0.20. Phys. Rev. B 51, 12742–12746 (1995).

  22. 22

    Tranquada, J. M. et al. Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4 . Phys. Rev. Lett. 78, 338–341 (1997).

  23. 23

    Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4 . Phys. Rev. B 70, 104517 (2004).

  24. 24

    Abbamonte, P. et al. Spatially modulated ‘mottness’ in La2−xBaxCuO4 . Nature Phys. 1, 155–158 (2005).

  25. 25

    Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Doan, F. The structure of the high-energy spin excitations in a high-transition temperature superconductor. Nature 429, 531–534 (2004).

  26. 26

    Hinkov, V. et al. Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x . Nature 430, 650–654 (2004).

  27. 27

    Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 430, 534–538 (2004).

  28. 28

    Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

  29. 29

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

  30. 30

    Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

  31. 31

    Gough, C. E. et al. Flux quantization in a high- Tc superconductor. Nature 326, 855 (1987).

  32. 32

    Gammel, P. L. et al. Observation of hexagonally correlated flux quanta in YBa2Cu3O7 . Phys. Rev. Lett. 59, 2592–2595 (1996).

  33. 33

    Wynn, J. C. et al. Limits on spin-charge separation from h/2e fluxoids in very underdoped YBa2Cu3O6+x . Phys. Rev. Lett. 87, 197002 (2001).

  34. 34

    Bonn, D. A. et al. A limit on spin-charge separation in high- Tc superconductors from the absence of a vortex-memory effect. Nature 414, 887–889 (2001).

  35. 35

    Anderson, P. W. & Morel, P. Generalized Bardeen-Cooper-Schrieffer states and the proposed low-temperature phase of liquid He3. Phys. Rev. 123, 1911–1934 (1961).

  36. 36

    Balian, R. & Werthamer, N. R. Superconductivity with pairs in a relative p wave. Phys. Rev. 131, 1553–1564 (1963).

  37. 37

    Anderson, P. W. Knight shift in superconductors. Phys. Rev. Lett. 3, 325–326 (1959).

  38. 38

    Takigawa, M., Hammel, P. C., Heffner, R. H. & Fisk, Z. Spin susceptibility in superconducting YBa2Cu3O7 from63Cu Knight shift. Phys. Rev. B 39, 7371–7374 (1989).

  39. 39

    Barrett, S. E. et al. 63Cu Knight shifts in the superconducting state of YBa2Cu3O7−δ (Tc=90 K). Phys. Rev. B 41, 6283–6296 (1990).

  40. 40

    Hardy, W. N., Bonn, D. A., Morgan, D. C., Liang, R. & Zhang, K. Precision measurements of the temperature dependence of lambda in YBa2Cu3O6.95: Strong evidence for nodes in the gap function. Phys. Rev. Lett. 70, 3999–4002 (1993).

  41. 41

    Achkir, D., Poirier, M., Bonn, D. A., Liang, R. & Hardy, W. N. Temperature dependence of the in-plane penetration depth of YBa2Cu3O6.95 and YBa2(Cu0.9985Zn0.0015)3O6.95 crystals from T toT2. Phys. Rev. B 48, 13184–13187 (1993).

  42. 42

    Bonn, D. A. et al. Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95 . Phys. Rev. B 50, 4051–4063 (1994).

  43. 43

    Kitaoka, Y. Cu NMR and NQR studies of impurities-doped YBa2(Cu1−xMx)3O7 (M=Zn and Ni) . J. Phys. Soc. Jpn 62, 2803–2818 (1993).

  44. 44

    Erb, A., Walker, E. & Flukiger, R. BaZrO3: the solution to the crucible corrosion problem during the single crystal growth of high- Tc superconductors; REBa2Cu3O7−δ RE=Y,PR . Physica C 245, 245–251 (1995).

  45. 45

    Liang, R., Bonn, D. A. & Hardy, W. N. Growth of high quality YBCO single crystals using BaZrO3 crucibles. Physica C 304, 105–111 (1998).

  46. 46

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (1994).

  47. 47

    Shen, Z.-X. et al. Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 70, 1553–1556 (1993).

  48. 48

    Ding, H. et al. Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x . Phys. Rev. B 54, 9678–9681 (1996).

  49. 49

    Tsuei, C. C. et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7−δ . Phys. Rev. Lett. 73, 593–596 (1994).

  50. 50

    Tsuei, C. C. et al. Robust d x 2 − y 2 pairing symmetry in hole-doped cuprate superconductors. Phys. Rev. Lett. 93, 187004 (2004).

  51. 51

    Tsuei, C. C. & Kirtley, J. R. Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors. Phys. Rev. Lett. 85, 182–185 (2000).

  52. 52

    Wollman, D. A., Harlingen, D. J. V., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).

  53. 53

    Hilgenkamp, H. et al. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 422, 50–53 (2004).

  54. 54

    Smilde, H.-J. H., Ariando, Rogalla, H. & Hilgenkamp, H. Bistable superconducting quantum interference device with built-in switchable π/2 phase shift. Appl. Phys. Lett. 85, 4091–4093 (2003).

  55. 55

    Taillefer, L., Lussier, B., Gagnon, R., Behnia, K. & Aubin, H. Universal heat conduction in YBa2Cu3O6.9 . Phys. Rev. Lett. 79, 483–486 (1997).

  56. 56

    Chiao, M. et al. Quasiparticle transport in the vortex state of YBa2Cu3O6.9 . Phys. Rev. Lett. 82, 2943–2946 (1999).

  57. 57

    Turner, P. et al. Observation of weak-limit quasiparticle scattering via broadband microwave spectroscopy of a d-wave superconductor. Phys. Rev. Lett. 90, 237005 (2003).

  58. 58

    Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000).

  59. 59

    Hudson, E. W. et al. Interplay of magnetism and high- Tc superconductivity at individual ni impurity atoms in Bi2Sr2CaCu2O8+δ . Nature 411, 920–924 (2001).

  60. 60

    Lobb, C. Critical fluctuations in high- Tc superconductors. Phys. Rev. B 36, 3930–3932 (1987).

  61. 61

    Fisher, D., Fisher, M. & Huse, D. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1991).

  62. 62

    Uemura, Y. J. et al. Universal correlations between Tc and n s/m* (carrier density over effective mass) in high- Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989).

  63. 63

    Kamal, S. et al. Penetration depth measurements of 3D XY critical behaviour in YBa2Cu3O6.95 crystals. Phys. Rev. Lett. 73, 1845–1848 (1994).

  64. 64

    Overend, N., Howson, M. & Lawrie, I. 3D X−Y scaling of the specific heat of YBa2Cu3O7−δ single crystals. Phys. Rev. Lett. 72, 3238–3241 (1994).

  65. 65

    Pasler, V. et al. 3D−XY critical fluctuations of the thermal expansivity in detwinned YBa2Cu3O7−δ single crystals near optimal doping. Phys. Rev. Lett. 81, 1094–1097 (1998).

  66. 66

    Meingast, C. et al. Phase fluctuations and the pseudogap in YBa2Cu3O6+x . Phys. Rev. Lett. 86, 1606–1609 (2001).

  67. 67

    Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999).

  68. 68

    Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8+δ superconductor in an intense magnetic field. Phys. Rev. Lett. 95, 247002 (2005).

  69. 69

    Wang, Y. et al. High field phase diagram of cuprates derived from the Nernst effect. Phys. Rev. Lett. 88, 257003 (2002).

  70. 70

    Wang, Y. et al. Dependence of upper critical field and pairing strength on doping in cuprates. Science 299, 86–89 (2002).

  71. 71

    Shi, J., Ling, X. S., Liang, R., Bonn, D. A. & Hardy, W. N. Giant peak effect observed in an ultrapure YBa2Cu3O6.993 crystal. Phys. Rev. B 60, 12593–12596 (1999).

  72. 72

    Farrell, D. E., Rice, J. P. & Ginsberg, D. M. Experimental evidence for flux-lattice melting. Phys. Rev. Lett. 67, 1165–1168 (1991).

  73. 73

    Liang, R., Bonn, D. A. & Hardy, W. N. Discontinuity of reversible magnetization in untwinned YBCO single crystals at the first order vortex melting transition. Phys. Rev. Lett. 76, 835–838 (1996).

  74. 74

    Safar, H. et al. Experimental evidence for a first-order vortex-lattice-melting transition in untwinned, single crystal YBa2Cu3O7 . Phys. Rev. Lett. 69, 824–827 (1992).

  75. 75

    Sonier, J. E., Brewer, J. H. & Kiefl, R. F. μSR studies of the vortex state in type-II superconductors. Rev. Mod. Phys. 72, 769–811 (2000).

  76. 76

    Malozemoff, A. P., Mannhart, J. & Scalapino, D. High temperature superconductors get to work. Phys. Today 58, 41–47 (2005).

  77. 77

    Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

  78. 78

    Ruckenstein, A. E., Hirschfeld, P. J. & Appel, J. Mean-field theory of high- Tc superconductivity: the superexchange mechanism. Phys. Rev. B 36, 857–860 (1987).

  79. 79

    Baskaran, G., Zou, Z. & Anderson, P. W. The resonating valence bond state and high- Tc superconductivity - a mean field theory. Solid State Comm. 63, 973–976 (1987).

  80. 80

    Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

  81. 81

    Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

  82. 82

    Tallon, J. & Loram, J. W. The doping dependence of T* what is the real high- Tc phase diagram? Physica C 349, 53–68 (2001).

  83. 83

    Boebinger, G. S. et al. Insulator-to-metal crossover in the normal state of La2−xSrxCuO4 near optimum doping. Phys. Rev. Lett. 77, 5417–5420 (1996).

  84. 84

    Lake, B. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002).

  85. 85

    Lake, B. et al. Three-dimensionality of field-induced magnetism in a high-temperature superconductor. Nature Mater. 4, 658–662 (2005).

  86. 86

    Miller, R. I. et al. Evidence for static magnetism in the vortex cores of ortho-II YBa2Cu3O6.50 . Phys. Rev. Lett. 88, 137002 (2002).

  87. 87

    Maggio-Aprile, I., Renner, C., Erb, A., Walker, E. & Fischer, Ø. Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7−δ . Phys. Rev. Lett. 75, 2754–2757 (1995).

  88. 88

    Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

  89. 89

    Hanaguri, T. et al. A checkerboard electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004).

  90. 90

    McElroy, K. et al. Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ . Science 309, 1048–1052 (2005).

  91. 91

    Corson, J., Orenstein, J., Oh, S., O’Donnell, J. & Eckstein, J. N. Nodal quasiparticle lifetime in the superconducting state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 85, 2569–2572 (2000).

  92. 92

    Breit, V. et al. Evidence for chain superconductivity in near-stoichiometric YBa2Cu3Ox single crystals. Phys. Rev. B 52, 15727–15730 (1995).

  93. 93

    Eisaki, H. et al. Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69, 064512 (2004).

  94. 94

    Feng, D. L. et al. Electronic excitations near the brillouin zone boundary of Bi2Sr2CaCu2O8+δ . Phys. Rev. B 65, 220501 (2002).

Download references

Acknowledgements

The author would like to thank D. Peets, Z.-X. Shen, H. Hilgenkamp, C. Meingast and K. McElroy for providing figures. This manuscript owes a debt to the thoughts of countless fellow researchers over twenty years, but I am particularly grateful to W. N. Hardy and Ruixing Liang.

Author information

Correspondence to D. A. Bonn.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading