Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Are high-temperature superconductors exotic?

Abstract

High-temperature superconductivity in the copper oxides, first discovered twenty years ago, has led researchers on a wide-ranging quest to understand and use this new state of matter. From the start, these materials have been viewed as ‘exotic’ superconductors, for which the term exotic can take on many meanings. The breadth of work that has taken place reflects the fact that they have turned out to be exotic in almost every way imaginable. They exhibit new states of matter (d-wave superconductivity, charge stripes), dramatic manifestations of fluctuating superconductivity, plus a key inspiration and testing ground for new experimental and theoretical techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986).

    Article  ADS  Google Scholar 

  2. Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).

    Article  ADS  Google Scholar 

  3. Sun, G. F., Wong, K. W., Xu, B. R., Xin, Y. & Lu, D. F. Tc enhancement of HgBa2Ca2Cu3O8+δ by Tl substitution. Phys. Lett. A 192, 122–124 (1994).

    Article  ADS  Google Scholar 

  4. Sleight, A. W., Gillson, J. L. & Bierstedt, P. E. High-temperature superconductivity in the BaPb1−xBixO3 systems. Solid State Commun. 17, 27–28 (1975).

    Article  ADS  Google Scholar 

  5. Scalapino, D. J., Loh, E. & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

    Article  ADS  Google Scholar 

  6. Scalapino, D. J. The case for d x 2 − y 2 pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995).

    Article  ADS  Google Scholar 

  7. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  Google Scholar 

  8. Vaknin, D. et al. Antiferromagnetism in La2CuO4−y . Phys. Rev. Lett. 58, 2802–2805 (1987).

    Article  ADS  Google Scholar 

  9. Tranquada, J. M. et al. Neutron-diffraction determination of antiferromagnetic structure of Cu ions in YBa2Cu3O6+x withx=0.0 and 0.15. Phys. Rev. Lett. 60, 156–159 (1988).

    Article  ADS  Google Scholar 

  10. Alff, L. et al. A hidden pseudogap under the ‘dome’ of superconductivity in electron-doped high-temperature superconductors. Nature 422, 698–701 (2003).

    Article  ADS  Google Scholar 

  11. Batlogg, B. et al. Normal state phase diagram of (La,Sr)2CuO4 from charge and spin dynamics. Physica C 235, 130–133 (1994).

    Article  ADS  Google Scholar 

  12. Niedermayer, C. et al. Common phase diagram for antiferromagnetism in La2−xSrxCuO4 and Y1−xCaxBa2Cu3O6 as seen by muon spin rotation. Phys. Rev. Lett. 80, 3843–3846 (1998).

    Article  ADS  Google Scholar 

  13. Thurston, T. R. et al. Neutron scattering study of the magnetic excitations in metallic and superconducting La2−xSrxCuO4−y . Phys. Rev. B 40, 4585–4595 (1989).

    Article  ADS  Google Scholar 

  14. Cheong, S.-W. et al. Incommensurate magnetic fluctuations in La2−xSrxCuO4 . Phys. Rev. Lett. 67, 1791–1794 (1991).

    Article  ADS  Google Scholar 

  15. Mason, T. E., Aeppli, G. & Mook, H. A. Magnetic dynamics of superconducting La1.86Sr0.14CuO4 . Phys. Rev. Lett. 68, 1414–1417 (1992).

    Article  ADS  Google Scholar 

  16. Thurston, T. R. et al. Low-energy incommensurate spin excitations in superconducting La1.85Sr0.15CuO4 . Phys. Rev. B 46, 9128–9131 (1992).

    Article  ADS  Google Scholar 

  17. Hussey, N. Low-energy quasiparticles in high-Tc cuprates. Adv. Phys. 51, 1685–1771 (2002).

    Article  ADS  Google Scholar 

  18. Hussey, N., Abdel-Jawad, M., Carrington, A., Mackenzie, A. & Balicas, L. A coherent three-dimensional fermi surface in a high-transition-temperature superconductor. Nature 425, 814–817 (2003).

    Article  ADS  Google Scholar 

  19. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  20. Tranquada, J. M., Buttrey, D. J., Sachan, V. & Lorenzo, J. E. Simultaneous ordering of holes and spins in La2NiO4.125 . Phys. Rev. Lett. 73, 1003–1006 (1995).

    Article  ADS  Google Scholar 

  21. Sachan, V., Buttrey, D. J., Tranquada, J. M., Lorenzo, J. E. & Shirane, G. Charge and spin ordering in La2−xSrxNiO4.00 withx=0.135 and 0.20. Phys. Rev. B 51, 12742–12746 (1995).

    Article  ADS  Google Scholar 

  22. Tranquada, J. M. et al. Coexistence of, and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4 . Phys. Rev. Lett. 78, 338–341 (1997).

    Article  ADS  Google Scholar 

  23. Fujita, M., Goka, H., Yamada, K., Tranquada, J. M. & Regnault, L. P. Stripe order, depinning, and fluctuations in La1.875Ba0.125CuO4 and La1.875Ba0.075Sr0.050CuO4 . Phys. Rev. B 70, 104517 (2004).

    Article  ADS  Google Scholar 

  24. Abbamonte, P. et al. Spatially modulated ‘mottness’ in La2−xBaxCuO4 . Nature Phys. 1, 155–158 (2005).

    Article  ADS  Google Scholar 

  25. Hayden, S. M., Mook, H. A., Dai, P., Perring, T. G. & Doan, F. The structure of the high-energy spin excitations in a high-transition temperature superconductor. Nature 429, 531–534 (2004).

    Article  ADS  Google Scholar 

  26. Hinkov, V. et al. Two-dimensional geometry of spin excitations in the high-transition-temperature superconductor YBa2Cu3O6+x . Nature 430, 650–654 (2004).

    Article  ADS  Google Scholar 

  27. Tranquada, J. M. et al. Quantum magnetic excitations from stripes in copper oxide superconductors. Nature 430, 534–538 (2004).

    Article  ADS  Google Scholar 

  28. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003).

    Article  ADS  Google Scholar 

  29. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gough, C. E. et al. Flux quantization in a high- Tc superconductor. Nature 326, 855 (1987).

    Article  ADS  Google Scholar 

  32. Gammel, P. L. et al. Observation of hexagonally correlated flux quanta in YBa2Cu3O7 . Phys. Rev. Lett. 59, 2592–2595 (1996).

    Article  ADS  Google Scholar 

  33. Wynn, J. C. et al. Limits on spin-charge separation from h/2e fluxoids in very underdoped YBa2Cu3O6+x . Phys. Rev. Lett. 87, 197002 (2001).

    Article  ADS  Google Scholar 

  34. Bonn, D. A. et al. A limit on spin-charge separation in high- Tc superconductors from the absence of a vortex-memory effect. Nature 414, 887–889 (2001).

    Article  ADS  Google Scholar 

  35. Anderson, P. W. & Morel, P. Generalized Bardeen-Cooper-Schrieffer states and the proposed low-temperature phase of liquid He3. Phys. Rev. 123, 1911–1934 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  36. Balian, R. & Werthamer, N. R. Superconductivity with pairs in a relative p wave. Phys. Rev. 131, 1553–1564 (1963).

    Article  ADS  Google Scholar 

  37. Anderson, P. W. Knight shift in superconductors. Phys. Rev. Lett. 3, 325–326 (1959).

    Article  ADS  MATH  Google Scholar 

  38. Takigawa, M., Hammel, P. C., Heffner, R. H. & Fisk, Z. Spin susceptibility in superconducting YBa2Cu3O7 from63Cu Knight shift. Phys. Rev. B 39, 7371–7374 (1989).

    Article  ADS  Google Scholar 

  39. Barrett, S. E. et al. 63Cu Knight shifts in the superconducting state of YBa2Cu3O7−δ (Tc=90 K). Phys. Rev. B 41, 6283–6296 (1990).

    Article  ADS  Google Scholar 

  40. Hardy, W. N., Bonn, D. A., Morgan, D. C., Liang, R. & Zhang, K. Precision measurements of the temperature dependence of lambda in YBa2Cu3O6.95: Strong evidence for nodes in the gap function. Phys. Rev. Lett. 70, 3999–4002 (1993).

    Article  ADS  Google Scholar 

  41. Achkir, D., Poirier, M., Bonn, D. A., Liang, R. & Hardy, W. N. Temperature dependence of the in-plane penetration depth of YBa2Cu3O6.95 and YBa2(Cu0.9985Zn0.0015)3O6.95 crystals from T toT2. Phys. Rev. B 48, 13184–13187 (1993).

    Article  ADS  Google Scholar 

  42. Bonn, D. A. et al. Comparison of the influence of Ni and Zn impurities on the electromagnetic properties of YBa2Cu3O6.95 . Phys. Rev. B 50, 4051–4063 (1994).

    Article  ADS  Google Scholar 

  43. Kitaoka, Y. Cu NMR and NQR studies of impurities-doped YBa2(Cu1−xMx)3O7 (M=Zn and Ni) . J. Phys. Soc. Jpn 62, 2803–2818 (1993).

    Article  ADS  Google Scholar 

  44. Erb, A., Walker, E. & Flukiger, R. BaZrO3: the solution to the crucible corrosion problem during the single crystal growth of high- Tc superconductors; REBa2Cu3O7−δ RE=Y,PR . Physica C 245, 245–251 (1995).

    Article  ADS  Google Scholar 

  45. Liang, R., Bonn, D. A. & Hardy, W. N. Growth of high quality YBCO single crystals using BaZrO3 crucibles. Physica C 304, 105–111 (1998).

    Article  ADS  Google Scholar 

  46. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (1994).

    Article  ADS  Google Scholar 

  47. Shen, Z.-X. et al. Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 70, 1553–1556 (1993).

    Article  ADS  Google Scholar 

  48. Ding, H. et al. Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x . Phys. Rev. B 54, 9678–9681 (1996).

    Article  ADS  Google Scholar 

  49. Tsuei, C. C. et al. Pairing symmetry and flux quantization in a tricrystal superconducting ring of YBa2Cu3O7−δ . Phys. Rev. Lett. 73, 593–596 (1994).

    Article  ADS  Google Scholar 

  50. Tsuei, C. C. et al. Robust d x 2 − y 2 pairing symmetry in hole-doped cuprate superconductors. Phys. Rev. Lett. 93, 187004 (2004).

    Article  ADS  Google Scholar 

  51. Tsuei, C. C. & Kirtley, J. R. Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors. Phys. Rev. Lett. 85, 182–185 (2000).

    Article  ADS  Google Scholar 

  52. Wollman, D. A., Harlingen, D. J. V., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993).

    Article  ADS  Google Scholar 

  53. Hilgenkamp, H. et al. Ordering and manipulation of the magnetic moments in large-scale superconducting π-loop arrays. Nature 422, 50–53 (2004).

    Article  ADS  Google Scholar 

  54. Smilde, H.-J. H., Ariando, Rogalla, H. & Hilgenkamp, H. Bistable superconducting quantum interference device with built-in switchable π/2 phase shift. Appl. Phys. Lett. 85, 4091–4093 (2003).

    Article  ADS  Google Scholar 

  55. Taillefer, L., Lussier, B., Gagnon, R., Behnia, K. & Aubin, H. Universal heat conduction in YBa2Cu3O6.9 . Phys. Rev. Lett. 79, 483–486 (1997).

    Article  ADS  Google Scholar 

  56. Chiao, M. et al. Quasiparticle transport in the vortex state of YBa2Cu3O6.9 . Phys. Rev. Lett. 82, 2943–2946 (1999).

    Article  ADS  Google Scholar 

  57. Turner, P. et al. Observation of weak-limit quasiparticle scattering via broadband microwave spectroscopy of a d-wave superconductor. Phys. Rev. Lett. 90, 237005 (2003).

    Article  ADS  Google Scholar 

  58. Pan, S. H. et al. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ . Nature 403, 746–750 (2000).

    Article  ADS  Google Scholar 

  59. Hudson, E. W. et al. Interplay of magnetism and high- Tc superconductivity at individual ni impurity atoms in Bi2Sr2CaCu2O8+δ . Nature 411, 920–924 (2001).

    Article  ADS  Google Scholar 

  60. Lobb, C. Critical fluctuations in high- Tc superconductors. Phys. Rev. B 36, 3930–3932 (1987).

    Article  ADS  Google Scholar 

  61. Fisher, D., Fisher, M. & Huse, D. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1991).

    Article  ADS  Google Scholar 

  62. Uemura, Y. J. et al. Universal correlations between Tc and n s/m* (carrier density over effective mass) in high- Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989).

    Article  ADS  Google Scholar 

  63. Kamal, S. et al. Penetration depth measurements of 3D XY critical behaviour in YBa2Cu3O6.95 crystals. Phys. Rev. Lett. 73, 1845–1848 (1994).

    Article  ADS  Google Scholar 

  64. Overend, N., Howson, M. & Lawrie, I. 3D X−Y scaling of the specific heat of YBa2Cu3O7−δ single crystals. Phys. Rev. Lett. 72, 3238–3241 (1994).

    Article  ADS  Google Scholar 

  65. Pasler, V. et al. 3D−XY critical fluctuations of the thermal expansivity in detwinned YBa2Cu3O7−δ single crystals near optimal doping. Phys. Rev. Lett. 81, 1094–1097 (1998).

    Article  ADS  Google Scholar 

  66. Meingast, C. et al. Phase fluctuations and the pseudogap in YBa2Cu3O6+x . Phys. Rev. Lett. 86, 1606–1609 (2001).

    Article  ADS  Google Scholar 

  67. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999).

    Article  ADS  Google Scholar 

  68. Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8+δ superconductor in an intense magnetic field. Phys. Rev. Lett. 95, 247002 (2005).

    Article  ADS  Google Scholar 

  69. Wang, Y. et al. High field phase diagram of cuprates derived from the Nernst effect. Phys. Rev. Lett. 88, 257003 (2002).

    Article  ADS  Google Scholar 

  70. Wang, Y. et al. Dependence of upper critical field and pairing strength on doping in cuprates. Science 299, 86–89 (2002).

    Article  ADS  Google Scholar 

  71. Shi, J., Ling, X. S., Liang, R., Bonn, D. A. & Hardy, W. N. Giant peak effect observed in an ultrapure YBa2Cu3O6.993 crystal. Phys. Rev. B 60, 12593–12596 (1999).

    Article  ADS  Google Scholar 

  72. Farrell, D. E., Rice, J. P. & Ginsberg, D. M. Experimental evidence for flux-lattice melting. Phys. Rev. Lett. 67, 1165–1168 (1991).

    Article  ADS  Google Scholar 

  73. Liang, R., Bonn, D. A. & Hardy, W. N. Discontinuity of reversible magnetization in untwinned YBCO single crystals at the first order vortex melting transition. Phys. Rev. Lett. 76, 835–838 (1996).

    Article  ADS  Google Scholar 

  74. Safar, H. et al. Experimental evidence for a first-order vortex-lattice-melting transition in untwinned, single crystal YBa2Cu3O7 . Phys. Rev. Lett. 69, 824–827 (1992).

    Article  ADS  Google Scholar 

  75. Sonier, J. E., Brewer, J. H. & Kiefl, R. F. μSR studies of the vortex state in type-II superconductors. Rev. Mod. Phys. 72, 769–811 (2000).

    Article  ADS  Google Scholar 

  76. Malozemoff, A. P., Mannhart, J. & Scalapino, D. High temperature superconductors get to work. Phys. Today 58, 41–47 (2005).

    Article  Google Scholar 

  77. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994).

    Article  ADS  Google Scholar 

  78. Ruckenstein, A. E., Hirschfeld, P. J. & Appel, J. Mean-field theory of high- Tc superconductivity: the superexchange mechanism. Phys. Rev. B 36, 857–860 (1987).

    Article  ADS  Google Scholar 

  79. Baskaran, G., Zou, Z. & Anderson, P. W. The resonating valence bond state and high- Tc superconductivity - a mean field theory. Solid State Comm. 63, 973–976 (1987).

    Article  ADS  Google Scholar 

  80. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    Article  ADS  Google Scholar 

  81. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999).

    Article  ADS  Google Scholar 

  82. Tallon, J. & Loram, J. W. The doping dependence of T* what is the real high- Tc phase diagram? Physica C 349, 53–68 (2001).

    Article  ADS  Google Scholar 

  83. Boebinger, G. S. et al. Insulator-to-metal crossover in the normal state of La2−xSrxCuO4 near optimum doping. Phys. Rev. Lett. 77, 5417–5420 (1996).

    Article  ADS  Google Scholar 

  84. Lake, B. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002).

    Article  ADS  Google Scholar 

  85. Lake, B. et al. Three-dimensionality of field-induced magnetism in a high-temperature superconductor. Nature Mater. 4, 658–662 (2005).

    Article  ADS  Google Scholar 

  86. Miller, R. I. et al. Evidence for static magnetism in the vortex cores of ortho-II YBa2Cu3O6.50 . Phys. Rev. Lett. 88, 137002 (2002).

    Article  ADS  Google Scholar 

  87. Maggio-Aprile, I., Renner, C., Erb, A., Walker, E. & Fischer, Ø. Direct vortex lattice imaging and tunneling spectroscopy of flux lines on YBa2Cu3O7−δ . Phys. Rev. Lett. 75, 2754–2757 (1995).

    Article  ADS  Google Scholar 

  88. Hoffman, J. E. et al. A four unit cell periodic pattern of quasi-particle states surrounding vortex cores in Bi2Sr2CaCu2O8+δ . Science 295, 466–469 (2002).

    Article  ADS  Google Scholar 

  89. Hanaguri, T. et al. A checkerboard electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004).

    Article  ADS  Google Scholar 

  90. McElroy, K. et al. Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ . Science 309, 1048–1052 (2005).

    Article  ADS  Google Scholar 

  91. Corson, J., Orenstein, J., Oh, S., O’Donnell, J. & Eckstein, J. N. Nodal quasiparticle lifetime in the superconducting state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 85, 2569–2572 (2000).

    Article  ADS  Google Scholar 

  92. Breit, V. et al. Evidence for chain superconductivity in near-stoichiometric YBa2Cu3Ox single crystals. Phys. Rev. B 52, 15727–15730 (1995).

    Article  ADS  Google Scholar 

  93. Eisaki, H. et al. Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69, 064512 (2004).

    Article  ADS  Google Scholar 

  94. Feng, D. L. et al. Electronic excitations near the brillouin zone boundary of Bi2Sr2CaCu2O8+δ . Phys. Rev. B 65, 220501 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank D. Peets, Z.-X. Shen, H. Hilgenkamp, C. Meingast and K. McElroy for providing figures. This manuscript owes a debt to the thoughts of countless fellow researchers over twenty years, but I am particularly grateful to W. N. Hardy and Ruixing Liang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bonn.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonn, D. Are high-temperature superconductors exotic?. Nature Phys 2, 159–168 (2006). https://doi.org/10.1038/nphys248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing