Heralded noiseless amplification of a photon polarization qubit

Abstract

Photons are the best long-range carriers of quantum information, but the unavoidable absorption and scattering in a transmission channel places a serious limitation on viable communication distances. Signal amplification will therefore be an essential feature of quantum technologies, with direct applications to quantum communication, metrology and fundamental tests of quantum theory. Non-deterministic noiseless amplification of a single mode1,2,3,4,5 can circumvent the challenges related to amplifying a quantum signal, such as the no-cloning theorem6 and the minimum noise cost for deterministic quantum state amplification7. However, existing devices are not suitable for amplifying the fundamental optical quantum information carrier: a qubit coherently encoded across two optical modes. Here, we construct a coherent two-mode amplifier to demonstrate the first heralded noiseless linear amplification of a qubit encoded in the polarization state of a single photon. In doing so, we increase the transmission fidelity of a realistic qubit channel by up to a factor of five. Qubit amplifiers promise to extend the range of secure quantum communication8,9 and other quantum information science and technology protocols.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conceptual and experimental representations of the qubit amplifier circuit.
Figure 2: States of the qubit subspace before and after the amplifier.
Figure 3: Absolute values of the ρin and ρout density matrices.

References

  1. 1

    Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N. & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photon. 4, 316–319 (2010).

  2. 2

    Ferreyrol, F. et al. Implementation of a nondeterministic optical noiseless amplifier. Phys. Rev. Lett. 104, 123603 (2010).

  3. 3

    Zavatta, A., Fiurášek, J. & Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nature Photon. 5, 52–60 (2010).

  4. 4

    Usuga, M. A. et al. Noise-powered probabilistic concentration of phase information. Nature Phys. 6, 767–771 (2010).

  5. 5

    Osorio, C. I. et al. Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012).

  6. 6

    Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

  7. 7

    Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

  8. 8

    Gisin, N., Pironio, S. & Sangouard, N. Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010).

  9. 9

    Minar, J., de Riedmatten, H. & Sangouard, N. Quantum repeaters based on heralded qubit amplifiers. Phys. Rev. A 85, 032313 (2012).

  10. 10

    Nielsen, M. N. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  11. 11

    Shaji, A. & Caves, C. M. Qubit metrology and decoherence. Phys. Rev. A 76, 032111 (2008).

  12. 12

    Gao, W-B. et al. Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state. Nature Phys. 6, 331–335 (2010).

  13. 13

    Kwiat, P. G., Eberhard, P. H., Steinberg, A. M. & Chiao, R. Y. Proposal for a loophole-free Bell inequality experiment. Phys. Rev. A 49, 3209–3220 (1994).

  14. 14

    Pitkaens, D., Ma, X., Wickert, R., van Loock, P. & Lütkenhaus, N. Efficient heralding of photonics quits with applications to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011).

  15. 15

    Kok, P., Lee, H. & Dowling, J. P. Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002).

  16. 16

    Blandino, R. et al. Improving the maximum transmission distance of continuous-variable quantum key distribution using a noiseless amplifier. Phys. Rev. A 86, 012327 (2012).

  17. 17

    Mičuda, M. et al. Noiseless loss suppression in quantum optical communication. Phys. Rev. Lett. Preprint at http://arxiv.org/pdf/1206.2852.pdf (2012).

  18. 18

    Bennett, C. H. & Brassard, G. Proc. IEEE Int. Conf. Computers, Systems and Signal Processing Bangalore, India 175 (IEEE, 1984).

  19. 19

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  20. 20

    Pegg, D. T., Phillips, L. S. & Barnett, S. M. Optical state truncation by projection synthesis. Phys. Rev. Lett. 81, 1604–1606 (1998).

  21. 21

    Babichev, S. A., Ries, J. & Lvovsky, A. I. Quantum scissors: Teleportation of single-mode optical states by means of a nonlocal single photon. Europhys. Lett. 64, 1–7 (2003).

  22. 22

    White, A. G. et al. Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007).

  23. 23

    Berry, D. W. & Lvovsky, A. I. Preservation of loss in linear-optical processing. Phys. Rev. A 84, 042304 (2011).

  24. 24

    Tanida, M., Okamoto, R. & Takeuchi, S. Highly indistinguishable heralded single-photon sources using parametric down conversion. Opt. Express 20, 15275–15285 (2012).

Download references

Acknowledgements

This research was conducted by the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (Project number CE110001027). S.K. thanks D. J. Saunders and M. J. W. Hall for useful discussions.

Author information

G.J.P. and T.C.R. conceived and managed the project. S.K. built and conducted the experiment with assistance from G.Y.X. and G.J.P. S.K. analysed the data with assistance from G.J.P. All authors contributed to the theory and writing of the manuscript.

Correspondence to G. J. Pryde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kocsis, S., Xiang, G., Ralph, T. et al. Heralded noiseless amplification of a photon polarization qubit. Nature Phys 9, 23–28 (2013). https://doi.org/10.1038/nphys2469

Download citation

Further reading