Research Article | Published:

Magnetism and its microscopic origin in iron-based high-temperature superconductors

Nature Physics volume 8, pages 709718 (2012) | Download Citation

Abstract

High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising, as these undoped states exhibit dramatically different antiferromagnetic spin arrangements and Néel temperatures. Although there is a general consensus that magnetic interactions are important for superconductivity, much remains unknown concerning the microscopic origin of the magnetic states. In this review, we summarize the progress in this area, focusing on recent experimental and theoretical results, and their microscopic implications. We conclude that the parent compounds are in a state that is more complex than that implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Possible high-Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B 64, 189–193 (1986).

  2. 2.

    et al. Antiferromagnetism in La2CuO4−y. Phys. Rev. Lett. 58, 2802–2805 (1987).

  3. 3.

    et al. Neutron-diffraction determination of antiferromagnetic structure of Cu ions in YBa2Cu3O6+x with x = 0.0 and 0.15. Phys. Rev. Lett. 60, 156–159 (1988).

  4. 4.

    The case for dx2y2 pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995).

  5. 5.

    Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66, 763–840 (1994).

  6. 6.

    , & Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

  7. 7.

    et al. Progress in neutron scattering studies of spin excitations in high-Tc cuprates. J. Phys. Soc. Jpn 81, 011007 (2012).

  8. 8.

    The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

  9. 9.

    Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589–1652 (2011).

  10. 10.

    & High-temperature superconductivity in iron-based materials. Nature Phys. 6, 645–658 (2010).

  11. 11.

    , , & Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

  12. 12.

    , & Superconductivity at 38 K in the iron arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett. 101, 107006 (2008).

  13. 13.

    et al. The synthesis and characterization of LiFeAs and NaFeAs. Physica C 469, 326–331 (2009).

  14. 14.

    et al. Superconductivity in the PbO-type structure α-FeS. Proc. Natl Acad. Sci. USA 105, 14262 (2008).

  15. 15.

    Superconductivity gets an iron boost. Nature 464, 183–186 (2010).

  16. 16.

    , & Gap symmetry and structure of Fe-based superconductors. Rep. Prog. Phys. 74, 124508 (2011).

  17. 17.

    et al. Competing orders and spin-density-wave instability in LaO1−xFxFeAs. Euro. Phys. Lett. 83, 27006 (2008).

  18. 18.

    Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988).

  19. 19.

    et al. Magnetic order close to superconductivity in the iron-based layered LaO1−xFxFeAs systems. Nature 453, 899–902 (2008).

  20. 20.

    et al. Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors. Phys. Rev. Lett. 101, 257003 (2008).

  21. 21.

    et al. Structural and magnetic phase transitions in Na1−δFeAs. Phys. Rev. B 80, 020504 (2009).

  22. 22.

    , , , & Problems with reconciling density functional theory calculations with experiment in ferropnictides. Phys. Rev. B 78, 085104 (2008).

  23. 23.

    et al. Unconventional pairing originating from the disconnected Fermi surfaces of superconducting LaFeAsO1−xFx. Phys. Rev. Lett. 101, 087004 (2008).

  24. 24.

    Pairing mechanism in Fe-based superconductors. Annu. Rev. Condens. Matter Phys. 3, 57–92 (2012).

  25. 25.

    & The electron-pairing mechanism of iron-based superconductors. Science 332, 200–204 (2011).

  26. 26.

    The effect of collective spin-1 excitations on electronic spectra in high-Tc superconductors. Adv. Phys. 55, 47–183 (2006).

  27. 27.

    & Theory of neutron scattering as a probe of the superconducting gap in the iron pnictides. Phys. Rev. B 78, 020514 (2008).

  28. 28.

    & Theory of magnetic excitations in iron-based layered superconductors. Phys. Rev. B 78, 140509 (2008).

  29. 29.

    et al. Resonant spin excitation in the high temperature superconductor Ba0.6K0.4Fe2As2. Nature 456, 930–932 (2008).

  30. 30.

    et al. Neutron scattering studies of spin excitations in hole-doped Ba0.67K0.33Fe2As2 superconductor. Sci. Rep. 1, 115 (2011).

  31. 31.

    et al. Effect of Fermi surface nesting on resonant spin excitations in Ba1−xKxFe2As2. Phys. Rev. Lett. 107, 177003 (2011).

  32. 32.

    et al. Two-dimensional resonant magnetic excitation in BaFe1.84Co0.16As2. Phys. Rev. Lett. 102, 107005 (2009).

  33. 33.

    et al. Inelastic neutron-scattering measurements of a three-dimensional spin resonance in the FeAs-based BaFe1.9Ni0.1As2 superconductor. Phys. Rev. Lett. 102, 107006 (2009).

  34. 34.

    et al. Normal-state spin dynamics and temperature-dependent spin resonance energy in an optimally doped iron arsenide superconductor. Nature Phys. 6, 178 (2010).

  35. 35.

    et al. Symmetry of spin excitation spectra in tetragonal paramagnetic and superconducting phases of 122-ferropnictides. Phys. Rev. B 82, 134503 (2010).

  36. 36.

    et al. Dispersive spin fluctuations in the nearly optimally doped superconductor Ba(Fe1−xCox)2As2 (x = 0.065). Phys. Rev. B 81, 064505 (2010).

  37. 37.

    et al. Anisotropic and quasipropagating spin excitations in superconducting Ba(Fe0.926Co0.074)2As2. Phys. Rev. B 82, 140503 (2010).

  38. 38.

    et al. Electron doping evolution of the anisotropic spin excitations in BaFe2−xNixAs2. Phys. Rev. B 86, 024508 (2012).

  39. 39.

    et al. Unusual relationship between magnetism and superconductivity in FeTe0.5Se0.5. Phys. Rev. Lett. 104, 187002 (2010).

  40. 40.

    et al. Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6. Phys. Rev. Lett. 103, 067008 (2009).

  41. 41.

    et al. Evolution of spin excitations into the superconducting state in FeTe1−xSex. Nature Phys. 6, 182–186 (2010).

  42. 42.

    , , , & Fe-based superconductors: An angle-resolved photoemission spectroscopy perspective. Rep. Prog. Phys. 74, 124512 (2011).

  43. 43.

    & Strong correlations and magnetic frustration in the high Tc iron pnictides. Phys. Rev. Lett. 101, 076401 (2008).

  44. 44.

    , , & Correlation effects in the iron pnictides. New J. Phys. 11, 045001 (2009).

  45. 45.

    , , , & Theory of electron nematic order in LaOFeAs. Phys. Rev. B 77, 224509 (2008).

  46. 46.

    , & Ising and spin orders in the iron-based superconductors. Phys. Rev. B 78, 020501 (2008).

  47. 47.

    , & Pairing symmetry in a two-orbital exchange coupling model of oxypnictides. Phys. Rev. Lett. 101, 206404 (2008).

  48. 48.

    et al. Robustness of s-wave pairing in electron overdoped A1−yFe2−xSe2. Phy. Rev. X 1, 011009 (2011).

  49. 49.

    et al. Competing pairing symmetries in a generalized two-orbital model for the pnictide superconductors. Phys. Rev. Lett. 106, 217002 (2011).

  50. 50.

    et al. Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0). Phys. Rev. B 82, 180520 (2010).

  51. 51.

    et al. Fe-based high temperature superconductivity with Tc = 31 K bordering an insulating antiferromagnet in (Tl,K)FexSe2 Crystals. Europhys. Lett. 94, 27009 (2011).

  52. 52.

    et al. Strong nodeless pairing on separate electron Fermi surface sheets in (Tl,K)Fe1.78Se2 probed by ARPES. Europhys. Lett. 93, 57001 (2011).

  53. 53.

    et al. Heavily electron-doped electronic structure and isotropic superconducting gap in AxFe2Se2 (A = K,Cs). Nature Mater. 10, 273–277 (2011).

  54. 54.

    et al. Distinct Fermi surface topology and nodeless superconducting gap in a (Tl0.58Rb0.42)Fe1.72Se2 superconductor. Phys. Rev. Lett. 106, 107001 (2011).

  55. 55.

    et al. A novel large moment antiferromagnetic order in K0.8Fe1.6Se2 superconductor. Chinese Phys. Lett. 28, 086104 (2011).

  56. 56.

    et al. Common crystalline and magnetic structure of superconducting A2Fe4Se5 (A = K,Rb,Cs,Tl) single crystals measured using neutron diffraction. Phys. Rev. Lett. 107, 137003 (2011).

  57. 57.

    et al. Electronic correlations in the iron pnictides. Nature Phys. 5, 647–650 (2009).

  58. 58.

    , & Correlated electronic structure of LaO1−xFxFeAs. Phys. Rev. Lett. 100, 226402 (2008).

  59. 59.

    et al. Spin waves and electronic interactions in La2CuO4. Phys. Rev. Lett. 86, 5377–5380 (2001).

  60. 60.

    , , & Anomalous high-energy spin excitations in the high-Tc superconductor-parent antiferromagnet La2CuO4. Phys. Rev. Lett. 105, 247001 (2010).

  61. 61.

    et al. Superconductivity close to magnetic instability in Fe(Se1−xTex)0.82. Phys. Rev. B 78, 224503 (2008).

  62. 62.

    , , & Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Phys. Rev. B 78, 134514 (2008).

  63. 63.

    et al. Tunable (δπ,δπ)-type antiferromagnetic order in α-Fe(Te,Se) superconductors. Phys. Rev. Lett. 102, 247001 (2009).

  64. 64.

    et al. First-order magnetic and structural phase transitions in Fe1+ySexTe1−x. Phys. Rev. B 79, 054503 (2009).

  65. 65.

    et al. Itinerant magnetic excitations in antiferromagnetic CaFe2As2. Phys. Rev. Lett. 102, 187206 (2009).

  66. 66.

    et al. Spin waves and magnetic exchange interactions in CaFe2As2. Nature Phys. 5, 555–560 (2009).

  67. 67.

    et al. Itinerant spin excitations in SrFe2As2 measured by inelastic neutron scattering. Phys. Rev. B 83, 214519 (2011).

  68. 68.

    et al. Nematic spin fluid in the tetragonal phase of BaFe2As2. Phys. Rev. B 84, 054544 (2011).

  69. 69.

    et al. Magnetic-crystallographic phase diagram of the superconducting parent compound Fe1+xTe. Phys. Rev. B 84, 064403 (2011).

  70. 70.

    et al. Spin waves in the (π,0) magnetically ordered iron chalcogenide Fe1.05Te. Phys. Rev. Lett. 106, 057004 (2011).

  71. 71.

    et al. Unconventional temperature enhanced magnetism in iron telluride. Phys. Rev. Lett. 107, 216403 (2011).

  72. 72.

    et al. Spin waves and magnetic exchange interactions in insulating Rb0.89Fe1.58Se2. Nature Commun. 2, 580 (2011).

  73. 73.

    et al. Effects of Co substitution on thermodynamic and transport properties and anisotropic Hc2 in Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. B 78, 214515 (2008).

  74. 74.

    et al. Determination of the phase diagram of the electron-doped superconductor Ba(Fe1−xCox)2As2. Phys. Rev. B 79, 014506 (2009).

  75. 75.

    et al. Neutron scattering study of the interplay between structure and magnetism in Ba(Fe1−xCox)2As2. Phys. Rev. B 79, 144523 (2009).

  76. 76.

    et al. Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe0.953Co0.047)2As2 compound using X-ray and neutron scattering techniques. Phys. Rev. Lett. 103, 087001 (2009).

  77. 77.

    et al. Static and dynamic magnetism in underdoped superconductor BaFe1.92Co0.08As2. Phys. Rev. Lett. 103, 087002 (2009).

  78. 78.

    et al. Electron-doping evolution of the low-energy spin excitations in the iron arsenide superconductor BaFe2−xNixAs2. Phys. Rev. B 81, 174524 (2010).

  79. 79.

    et al. Magnetic field effect on static antiferromagnetic order and spin excitations in the underdoped iron arsenide superconductor BaFe1.92Ni0.08As2. Phys. Rev. B 83, 094516 (2011).

  80. 80.

    et al. Incommensurate spin-density wave order in electron-doped BaFe2As2 superconductors. Phys. Rev. Lett. 106, 257001 (2011).

  81. 81.

    et al. Coexistence and competition of the short-range incommensurate antiferromagnetic order with the superconducting state of BaFe2−xNixAs2. Phys. Rev. Lett. 108, 247002 (2012).

  82. 82.

    et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. Lett. 104, 057006 (2010).

  83. 83.

    et al. Coexistence of the spin-density wave and superconductivity in Ba1−xKxFe2As2. Europhys. Lett. 85, 17006 (2009).

  84. 84.

    et al. Electronic phase separation in the slightly underdoped iron pnictide superconductor Ba1−xKxFe2As2. Phys. Rev. Lett. 102, 117006 (2009).

  85. 85.

    et al. Magnetoelastic coupling in the phase diagram of Ba1−xKxFe2As2 as seen via neutron diffraction. Phys. Rev. B 83, 172503 (2011).

  86. 86.

    et al. Microscopic coexistence of superconductivity and magnetism in Ba1−xKxFe2As2. Phys. Rev. Lett. 107, 237001 (2011).

  87. 87.

    et al. Spin fluctuations and superconductivity in a three-dimensional tight-binding model for BaFe2As2. Phys. Rev. B 81, 214503 (2010).

  88. 88.

    , & Spectral analysis for the iron-based superconductors: Anisotropic spin fluctuations and fully gapped s±-wave superconductivity. Phys. Rev. B 82, 134527 (2010).

  89. 89.

    et al. Nature of magnetic excitations in superconducting BaFe1.9Ni0.1As2. Nature Phys. 8, 376–381 (2012).

  90. 90.

    et al. Incommensurate spin fluctuations in hole-overdoped superconductor KFe2As2. Phys. Rev. Lett. 106, 067003 (2011).

  91. 91.

    , & Magnetic excitation spectra in BaFe2As2: A two-particle approach within a combination of the density functional theory and the dynamical mean-field theory method. Phys. Rev. Lett. 107, 137007 (2011).

  92. 92.

    et al. Fermi surface and mass enhancement in KFe2As2 from de Haas-van Alphen effect measurements. J. Phys. Soc. Jpn 79, 053702 (2010).

  93. 93.

    et al. A detailed de Haas–van Alphen effect study of the overdoped cuprate Tl2Ba2CuO6+δ. New J. Phys. 12, 105009 (2010).

  94. 94.

    , & Ab initio derivation of low-energy model for iron-based superconductors LaFeAsO and LaFePO. J. Phys. Soc. Jpn 77, 093711 (2008).

  95. 95.

    et al. Crossover from weak to strong pairing in unconventional superconductors. Phys. Rev. B 83, 214520 (2011).

  96. 96.

    , & Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nature Mater. 10, 932–935 (2011).

  97. 97.

    et al. Electronic-structure-driven magnetic and structure transitions in superconducting NaFeAs single crystals measured by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 105, 117002 (2010).

  98. 98.

    et al. Neutron and ARPES constraints on the couplings of the multiorbital Hubbard model for the iron pnictides. Phys. Rev. B 82, 104508 (2010).

  99. 99.

    , , & Three-orbital model for the iron-based superconductors. Phys. Rev. B 81, 014511 (2010).

  100. 100.

    & Correlation effects on antiferromagnetism in Fe pnictides. J. Phys. Soc. Jpn 80, SA121 (2011).

  101. 101.

    , , & Comparison of ab initio low-energy models for LaFePO, BaFe2As2, LiFeAs, FeSe, and FeTe: Electron correlation and covalency. J. Phys. Soc. Jpn 79, 044705 (2010).

  102. 102.

    & Microscopic origin of magnetism and magnetic interactions in ferropnictides. Phys. Rev. B 79, 220510 (2009).

  103. 103.

    & Coherence–incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling. New J. Phys. 11, 025021 (2009).

  104. 104.

    , & Orbital ordering and unfrustrated (π,0) magnetism from degenerate double exchange in the iron pnictides. Phys. Rev. B 82, 045125 (2010).

  105. 105.

    , & Unified picture for magnetic correlations in iron-based superconductors. Phys. Rev. Lett. 105, 107004 (2010).

  106. 106.

    et al. Orbital-dependent modifications of electronic structure across the magnetostructural transition in BaFe2As2. Phys. Rev. Lett. 104, 057002 (2010).

  107. 107.

    et al. Orbital-weight redistribution triggered by spin order in the pnictides. Phys. Rev. B 81, 180514 (2010).

  108. 108.

    , & In-plane electronic anisotropy of underdoped ‘122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals. Rep. Prog. Phys. 74, 124506 (2011).

  109. 109.

    et al. Uniaxial-strain mechanical detwinning of CaFe2As2 and BaFe2As2 crystals: Optical and transport study. Phys. Rev. B 81, 814508 (2010).

  110. 110.

    & Anisotropy of the optical conductivity of a pnictide superconductor from the undoped three-orbital Hubbard model. Phys. Rev. B 84, 132505 (2011).

  111. 111.

    , , , & Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

  112. 112.

    et al. Symmetry breaking orbital anisotropy on detwinned Ba(Fe1−xCox)2As2 above the spin density wave transition. Proc. Natl Acad. Sci. USA 108, 6878 (2011).

  113. 113.

    et al. Unprecedented anisotropic metallic state in undoped iron arsenide BaFe2As2 revealed by optical spectroscopy. Proc. Natl Acad. Sci. USA 108, 12238 (2011).

  114. 114.

    et al. Effect of uniaxial strain on the structural and magnetic phase transitions in BaFe2As2. Phys. Rev. Lett. 108, 087001 (2012).

  115. 115.

    et al. Electronic nematicity above the structural and superconducting transition in BaFe2(As1−xPx)2. Nature 486, 382–385 (2012).

  116. 116.

    , , , & Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Phys. Rev. B 85, 024534 (2012).

  117. 117.

    et al. Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using x-ray emission spectroscopy. Phys. Rev. B 84, 100509 (2011).

  118. 118.

    et al. Evidence for strong itinerant spin fluctuations in the normal state of CeFeAsO0.89F0.11 iron-oxypnictide superconductors. Phys. Rev. Lett. 101, 267001 (2008).

  119. 119.

    et al. Dichotomy between large local and small ordered magnetic moments in iron-based superconductors. Phys. Rev. Lett. 104, 197002 (2010).

  120. 120.

    et al. Orbital-independent superconducting gaps in iron pnictides. Science 332, 564–567 (2011).

  121. 121.

    et al. Properties of a two-orbital model for oxypnictide superconductors: Magnetic order, B2g spin-singlet pairing channel, and its nodal structure. Phys. Rev. B 79, 134502 (2009).

  122. 122.

    et al. Role of degeneracy, hybridization, and nesting in the properties of multi-orbital systems. Phys. Rev. B 84, 094519 (2011).

  123. 123.

    et al. Nesting of electron and hole Fermi surfaces in nonsuperconducting BaFe2P2. Phys. Rev. B 83, 220504 (2011).

  124. 124.

    et al. Superconductivity without nesting in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010).

  125. 125.

    et al. Absence of holelike Fermi surface in superconducting K0.8Fe1.7Se2 revealed by ARPES. Phys. Rev. Lett. 106, 187001 (2011).

  126. 126.

    et al. Nematic electronic structure in the parent state of the iron-based superconductor Ca(Fe1−xCox)2As2. Science 327, 181–184 (2010).

  127. 127.

    & Is Fermi-surface nesting the origin of superconductivity in iron pnictides?: A fluctuation-exchange-approximation study. J. Phys. Soc. Jpn 78, 113707 (2009).

  128. 128.

    , & Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep. 344, 1–153 (2001).

  129. 129.

    , & Spectral density in a nematic state of iron pnictides. Phys. Rev. B 85, 184515 (2012).

Download references

Acknowledgements

We thank L. W. Harriger for preparing the figures shown in this manuscript. We are also grateful to T. A. Maier for calculating the FSs of BaFe2As2 shown in Fig. 2d. P.D. is supported by the US NSF DMR-1063866 (neutron scattering studies on electron-doped iron pnictides), OISE-0968226 (international collaboration) and by US DOE, BES, under Grant No. DE-FG02-05ER46202 (single crystal growth at UTK and neutron scattering studies of hole-doped iron pnictides and other iron-based superconductors). Work at Institute of Physics is supported by the Ministry of Science and Technology of China 973 program (2012CB821400). E.D. is supported by the US DOE, BES, Materials Sciences and Engineering Division and by the US NSF DMR-11-04386.

Author information

Affiliations

  1. Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA

    • Pengcheng Dai
    •  & Elbio Dagotto
  2. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190, China

    • Pengcheng Dai
    •  & Jiangping Hu
  3. Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA

    • Jiangping Hu
  4. Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

    • Elbio Dagotto

Authors

  1. Search for Pengcheng Dai in:

  2. Search for Jiangping Hu in:

  3. Search for Elbio Dagotto in:

Contributions

P.D. and E.D. wrote the experimental and theoretical portions of the article, respectively. J.P.H. revised the article. All authors discussed the outline of the article.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Pengcheng Dai or Elbio Dagotto.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys2438

Further reading