Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Probing an ultracold-atom crystal with matter waves

Abstract

Atomic quantum gases in optical lattices serve as a versatile testbed for important concepts of modern condensed-matter physics. The availability of methods to characterize strongly correlated phases is crucial for the study of these systems. Diffraction techniques to reveal long-range spatial structure, which may complement in situ detection methods, have been largely unexplored. Here we experimentally demonstrate that Bragg diffraction of neutral atoms can be used for this purpose. Using a one-dimensional Bose gas as a source of matter waves, we are able to infer the spatial ordering and on-site localization of atoms confined to an optical lattice. We also study the suppression of inelastic scattering between incident matter waves and the lattice-trapped atoms, occurring for increased lattice depth. Furthermore, we use atomic de Broglie waves to detect forced antiferromagnetic ordering in an atomic spin mixture, demonstrating the suitability of our method for the non-destructive detection of spin-ordered phases in strongly correlated atomic gases.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Interspecies collisions of one-dimensional bosons.
Figure 2: Probe scattering from a crystalline target.
Figure 3: Detecting forced antiferromagnetic order by means of matter-wave scattering.

References

  1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt-Saunders International Editions, 1976).

    MATH  Google Scholar 

  2. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  3. Kuklov, A. B. & Svistunov, B. V. Testing quantum correlations in a confined atomic cloud by the scattering of fast atoms. Phys. Rev. A 60, R769–R772 (1999).

    ADS  Article  Google Scholar 

  4. Sanders, S. N., Mintert, F. & Heller, E. J. Matter-wave scattering from ultracold atoms in an optical lattice. Phys. Rev. Lett. 105, 035301 (2010).

    ADS  Article  Google Scholar 

  5. Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    ADS  Article  Google Scholar 

  6. Altman, E., Demler, E. & Lukin, M. D. Probing many-body states of ultracold atoms via noise correlations. Phys. Rev. A 70, 013603 (2004).

    ADS  Article  Google Scholar 

  7. Gemelke, N., Zhang, X., Hung, C-L. & Chin, C. In situ observation of incompressible Mott-insulating domains in ultracold atomic gases. Nature 460, 995–998 (2009).

    ADS  Article  Google Scholar 

  8. Bakr, W. S. et al. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science 329, 547–550 (2010).

    ADS  Article  Google Scholar 

  9. Sherson, J. F. et al. Single-atom-resolved fluorescence imaging of an atomic Mott insulator. Nature 467, 68–72 (2010).

    ADS  Article  Google Scholar 

  10. Gericke, T., Würtz, P., Reitz, D., Langen, T. & Ott, H. High-resolution scanning electron microscopy of an ultracold quantum gas. Nature Phys. 4, 949–953 (2008).

    ADS  Article  Google Scholar 

  11. Javanainen, J. & Ruostekoski, J. Optical detection of fractional particle number in an atomic Fermi–Dirac Gas. Phys. Rev. Lett. 91, 150404 (2003).

    ADS  Article  Google Scholar 

  12. De Vega, I., Cirac, J. I. & Porras, D. Detection of spin correlations in optical lattices by light scattering. Phys. Rev. A 77, 051804 (2008).

    ADS  Article  Google Scholar 

  13. Corcovilos, T. A., Baur, S. K., Hitchcock, J. M., Mueller, E. J. & Hulet, R. G. Detecting antiferromagnetism of atoms in an optical lattice via optical Bragg scattering. Phys. Rev. A 81, 013415 (2010).

    ADS  Article  Google Scholar 

  14. Weitenberg, C. et al. Coherent light scattering from a two-dimensional Mott insulator. Phys. Rev. Lett. 106, 215301 (2011).

    ADS  Article  Google Scholar 

  15. Pino, J. M., Wild, R. J., Makotyn, P., Jin, D. S. & Cornell, E. A. Photon counting for Bragg spectroscopy of quantum gases. Phys. Rev. A 83, 033615 (2011).

    ADS  Article  Google Scholar 

  16. Olshanii, M. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938–941 (1998).

    ADS  Article  Google Scholar 

  17. Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).

    ADS  Article  Google Scholar 

  18. Soltan-Panahi, P. et al. Multi-component quantum gases in spin-dependent hexagonal lattices. Nature Phys. 7, 434–440 (2011).

    ADS  Google Scholar 

  19. Deutsch, I. H. & Jessen, P. S. Quantum-state control in optical lattices. Phys. Rev. A 57, 1972–1986 (1998).

    ADS  Article  Google Scholar 

  20. Pertot, D., Gadway, B. & Schneble, D. Collinear four-wave mixing of two-component matter waves. Phys. Rev. Lett. 104, 200402 (2010).

    ADS  Article  Google Scholar 

  21. Gadway, B., Pertot, D., Reimann, R. & Schneble, D. Superfluidity of interacting bosonic mixtures in optical lattices. Phys. Rev. Lett. 105, 045303 (2010).

    ADS  Article  Google Scholar 

  22. Stöferle, T., Moritz, H., Schori, C., Köhl, M. & Esslinger, T. Transition from a strongly interacting 1D superfluid to a Mott insulator. Phys. Rev. Lett. 92, 130403 (2004).

    ADS  Article  Google Scholar 

  23. Palzer, S., Zipkes, C., Sias, C. & Köhl, M. Quantum transport through a Tonks–Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009).

    ADS  Article  Google Scholar 

  24. McKay, D. & DeMarco, B. Thermometry with spin-dependent lattices. New J. Phys. 12, 055013 (2010).

    ADS  Article  Google Scholar 

  25. Clément, D., Fabbri, N., Fallani, L., Fort, C. & Inguscio, M. Exploring correlated 1D Bose gases from the superfluid to the Mott-insulator state by inelastic light scattering. Phys. Rev. Lett. 102, 155301 (2009).

    ADS  Article  Google Scholar 

  26. Ernst, P. T. et al. Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy. Nature Phys. 6, 56–61 (2010).

    ADS  Article  Google Scholar 

  27. Roscilde, T. & Cirac, J. I. Quantum emulsion: A glassy phase of bosonic mixtures in optical lattices. Phys. Rev. Lett. 98, 190402 (2007).

    ADS  Article  Google Scholar 

  28. Gadway, B., Pertot, D., Reeves, J., Vogt, M. & Schneble, D. Glassy behavior in a binary atomic mixture. Phys. Rev. Lett. 107, 145306 (2011).

    ADS  Article  Google Scholar 

  29. Fabbri, N., Clément, D., Fallani, L., Fort, C. & Inguscio, M. Momentum-resolved study of an array of one-dimensional strongly phase-fluctuating Bose gases. Phys. Rev. A 83, 031604 (2011).

    ADS  Article  Google Scholar 

  30. Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. Phys. Rev. Lett. 82, 4569–4573 (1999).

    ADS  Article  Google Scholar 

  31. Madison, K. W., Chevy, F., Bretin, V. & Dalibard, J. Stationary states of a rotating Bose–Einstein condensate: Routes to vortex nucleation. Phys. Rev. Lett. 86, 4443–4446 (2001).

    ADS  Article  Google Scholar 

  32. Raman, C., Abo-Shaeer, J. R., Vogels, J. M., Xu, K. & Ketterle, W. Vortex nucleation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 87, 210402 (2001).

    ADS  Article  Google Scholar 

  33. Pupillo, G., Griessner, A., Micheli, A., Ortner, M., Wang, D-W. & Zoller, P. Cold atoms and molecules in self-assembled dipolar lattices. Phys. Rev. Lett. 100, 050402 (2008).

    ADS  Article  Google Scholar 

  34. Pertot, D., Greif, D., Albert, S., Gadway, B. & Schneble, D. Versatile transporter apparatus for experiments with optically trapped Bose–Einstein condensates. J. Phys. B 42, 215305 (2009).

    ADS  Article  Google Scholar 

  35. Girardeau, M. Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1, 516–523 (1960).

    ADS  MathSciNet  Article  Google Scholar 

  36. Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963).

    ADS  MathSciNet  Article  Google Scholar 

  37. Dunjko, V., Lorent, V. & Olshanii, M. Bosons in cigar-shaped traps: Thomas–Fermi regime, Tonks–Girardeau regime, and in between. Phys. Rev. Lett. 86, 5413–5416 (2001).

    ADS  Article  Google Scholar 

  38. Gadway, B., Pertot, D., Reimann, R., Cohen, M. G. & Schneble, D. Analysis of Kapitza–Dirac diffraction patterns beyond the Raman–Nath regime. Opt. Express 17, 19173–19180 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Pupillo and K. Le Hur for discussions, and M. G. Cohen and T. Bergeman for valuable comments on the manuscript. This work was supported by the National Science Foundation (NSF) (PHY-0855643), and the Research Foundation of The State University of New York (SUNY). B.G. and J.R. acknowledge support from the Graduate Assistance in Areas of National Need (GAANN) program of the US Department of Education.

Author information

Authors and Affiliations

Authors

Contributions

D.S., B.G. and D.P. conceived the experiment. B.G. and D.P. carried out the measurements, with assistance from J.R. B.G. performed the data analysis, with contributions by D.P. D.S. supervised the project. All authors discussed the results and implications. B.G. and D.S. wrote the manuscript with contributions from D.P.

Corresponding author

Correspondence to Dominik Schneble.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gadway, B., Pertot, D., Reeves, J. et al. Probing an ultracold-atom crystal with matter waves. Nature Phys 8, 544–549 (2012). https://doi.org/10.1038/nphys2320

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2320

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing