Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit

Abstract

Future communication and computation technologies that exploit quantum information require robust and well-isolated qubits. Electron spins in IIIV semiconductor quantum dots, although promising candidate qubits, see their dynamics limited by undesirable hysteresis and decohering effects of the nuclear spin bath. Replacing electrons with valence-band holes should suppress the hyperfine interaction and consequently eliminate strong nuclear effects. Such suppression was recently observed in optical initialization and coherent population trapping experiments, but complete control over the phase of an arbitrary hole superposition—the essence of a hole-based qubit—has not yet been achieved. Using picosecond optical pulses, we now demonstrate complete coherent control of a single hole qubit and examine both free-induction and spin-echo decay. In moving from electrons to holes, we observe the effects of the reduced hyperfine interactions in the re-emergence of hysteresis-free dynamics, while obtaining similar coherence times limited by non-nuclear mechanisms. These results demonstrate the potential of optically controlled quantum-dot hole qubits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Device design and QD structure.
Figure 2: Ultrafast and complete optical coherent control.
Figure 3: Re-emergence of hysteresis-free dynamics for hole spins.
Figure 4: T2* and T2 decoherence.

Similar content being viewed by others

References

  1. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  2. Coish, W. A. & Loss, D. Hyperfine interaction in a quantum dot: Non-Markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004).

    Article  ADS  Google Scholar 

  3. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  4. Yao, W., Liu, R-B. & Sham, L. J. Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006).

    Article  ADS  Google Scholar 

  5. Witzel, W. M. & Das Sarma, S. Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quantum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment. Phys. Rev. B 74, 035322 (2006).

    Article  ADS  Google Scholar 

  6. Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    Article  ADS  Google Scholar 

  7. Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  8. Biercuk, M. et al. Optimized dynamical decoupling in a model quantum memory. Nature 458, 996–1000 (2009).

    Article  ADS  Google Scholar 

  9. Du, J. et al. Preserving electron spin coherence in solids by optimal dynamical decoupling. Nature 461, 1265–1268 (2009).

    Article  ADS  Google Scholar 

  10. de Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  ADS  Google Scholar 

  11. Bluhm, H. et al. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nature Phys. 7, 109–113 (2011).

    Article  ADS  Google Scholar 

  12. Vink, I. T. et al. Locking electron spins into magnetic resonance by electron–nuclear feedback. Nature Phys. 5, 764–768 (2009).

    Article  ADS  Google Scholar 

  13. Latta, C. et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nature Phys. 5, 758–763 (2009).

    Article  ADS  Google Scholar 

  14. Xu, X. et al. Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105–1109 (2009).

    Article  ADS  Google Scholar 

  15. Ladd, T. D. et al. Pulsed nuclear pumping and spin diffusion in a single charged quantum dot. Phys. Rev. Lett. 105, 107401 (2010).

    Article  ADS  Google Scholar 

  16. Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2008).

    Article  ADS  Google Scholar 

  17. Kane, B. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  Google Scholar 

  18. Borselli, M. G. et al. Measurement of valley splitting in high-symmetry Si/SiGe quantum dots. Appl. Phys. Lett. 98, 123118 (2011).

    Article  ADS  Google Scholar 

  19. De Greve, K. et al. Photon antibunching and magnetospectroscopy of a single fluorine donor in ZnSe. Appl. Phys. Lett. 97, 241913 (2010).

    Article  ADS  Google Scholar 

  20. Bulaev, D. V. & Loss, D. Spin decoherence and relaxation of holes in a quantum dot. Phys. Rev. Lett. 95, 076805 (2005).

    Article  ADS  Google Scholar 

  21. Fischer, J., Coish, W. A., Bulaev, D. V. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    Article  ADS  Google Scholar 

  22. Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    Article  ADS  Google Scholar 

  23. Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  ADS  Google Scholar 

  24. Fallahi, P., Yilmaz, S. T. & Imamoglu, A. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010).

    Article  ADS  Google Scholar 

  25. Chekhovich, E. A., Krysa, A. B., Skolnick, M. S. & Tartakovskii, A. I. Direct measurement of the hole-nuclear spin interaction in single quantum dots. Phys. Rev. Lett. 106, 027402 (2010).

    Article  ADS  Google Scholar 

  26. Berezovsky, J., Mikkelson, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  27. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  28. Semenov, Y. G., Borysenko, K. N. & Kim, K. W. Spin-phase relaxation of two-dimensional holes localized in a fluctuating potential. Phys. Rev. B 66, 113302 (2002).

    Article  ADS  Google Scholar 

  29. Sleiter, D. & Brinkman, W. F. Using holes in GaAs as qubits: An estimate of the Rabi frequency in the presence of an external rf field. Phys. Rev. B 74, 153312 (2006).

    Article  ADS  Google Scholar 

  30. Roloff, R., Eissfeller, T., Vogl, P. & Pötz, W. Electric g tensor control and spin echo of a hole-spin qubit in a quantum dot molecule. New J. Phys. 12, 093012 (2010).

    Article  ADS  Google Scholar 

  31. Nowack, K. C., Koppens, F. H. L., Nazarov, Y. V. & Vandersypen, L. M. K. Coherent control of a single spin with electric fields. Science 318, 1430–1433 (2007).

    Article  ADS  Google Scholar 

  32. Nadj-Perge, S., Frolov, S. M., Bakkers, E. P. A. M. & Kouwenhoven, L. P. Spin–orbit qubit in a semiconductor nanowire. Nature 468, 1084–1087 (2010).

    Article  ADS  Google Scholar 

  33. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  34. Xu, X. et al. Fast spin state initialization in a singly charged InAs–GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    Article  ADS  Google Scholar 

  35. Economou, S. E., Sham, L. J., Wu, Y. & Steel, D. G. Proposal for optical U(1) rotations of electron spin trapped in a quantum dot. Phys. Rev. B 74, 205415 (2006).

    Article  ADS  Google Scholar 

  36. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  37. Eble, B. et al. Hole-nuclear spin interaction in quantum dots. Phys. Rev. Lett. 102, 146601 (2009).

    Article  ADS  Google Scholar 

  38. Testelin, C., Bernardot, F., Eble, B. & Chamarro, M. Hole-spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B 79, 195440 (2009).

    Article  ADS  Google Scholar 

  39. Fischer, J. & Loss, D. Hybridization and spin decoherence in heavy-hole quantum dots. Phys. Rev. Lett. 105, 266603 (2010).

    Article  ADS  Google Scholar 

  40. Syperek, M. et al. Spin coherence of holes in GaAs/(Al,Ga)As quantum wells. Phys. Rev. Lett. 99, 187401 (2007).

    Article  ADS  Google Scholar 

  41. Heiss, D. et al. Observation of extremely slow hole spin relaxation in self-assembled quantum dots. Phys. Rev. B 76, 241306(R) (2007).

    Article  ADS  Google Scholar 

  42. Warburton, R. J. et al. Optical emission from a charge-tunable quantum ring. Nature 405, 926–929 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Coish for valuable discussions. This work was supported by NICT, NSF CCR-08 29694, NIST 60NANB9D9170, Special Coordination Funds for Promoting Science and Technology, the State of Bavaria, and by the JSPS through its FIRST Program. P.L.M. acknowledges support as a David Cheriton Stanford Graduate Fellow.

Author information

Authors and Affiliations

Authors

Contributions

D.B., C.S., M.K. and S.H. grew and fabricated the samples. K.D.G., P.L.M. and D.P. performed the optical experiments. T.D.L. provided theoretical analysis and guidance. Y.Y., L.W., S.H. and A.F. guided the work. K.D.G. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Kristiaan De Greve.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 731 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Greve, K., McMahon, P., Press, D. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys 7, 872–878 (2011). https://doi.org/10.1038/nphys2078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing