Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laser-driven proton scaling laws and new paths towards energy increase

Abstract

The past few years have seen remarkable progress in the development of laser-based particle accelerators. The ability to produce ultrabright beams of multi-megaelectronvolt protons routinely has many potential uses from engineering to medicine, but for this potential to be realized substantial improvements in the performances of these devices must be made. Here we show that in the laser-driven accelerator that has been demonstrated experimentally to produce the highest energy protons, scaling laws derived from fluid models and supported by numerical simulations can be used to accurately describe the acceleration of proton beams for a large range of laser and target parameters. This enables us to evaluate the laser parameters needed to produce high-energy and high-quality proton beams of interest for radiography of dense objects or proton therapy of deep-seated tumours.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Thinner solid targets improve the maximum energy of laser-accelerated protons as well as the laser–proton energy conversion efficiency.
Figure 2: The laser-accelerated proton maximum energy and conversion efficiency increase with laser pulse energy.
Figure 3: Longer pulses improve the laser-accelerated proton maximum as well as the energy conversion efficiency.
Figure 4: Comparison between fluid-model predictions and previously published data.
Figure 5: Study of the evolution of the electron and proton populations during ion acceleration using PIC and fluid simulations.
Figure 6: Projections of required laser energy and intensity to achieve a certain proton maximum energy using the adjusted fluid model.

References

  1. 1

    Clark, E. et al. Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670–673 (2000).

    ADS  Article  Google Scholar 

  2. 2

    Snavely, R. A. et al. Intense high-energy proton beams from Petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945–2948 (2000).

    ADS  Article  Google Scholar 

  3. 3

    Hatchett, S. et al. Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7, 2076–2079 (2000).

    ADS  Article  Google Scholar 

  4. 4

    Gitomer, S. J. et al. Fast ions and hot electrons in the laser-plasma interaction. Phys. Fluids 29, 2679–2688 (1986).

    ADS  Article  Google Scholar 

  5. 5

    Cowan, T. et al. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801 (2004).

    ADS  Article  Google Scholar 

  6. 6

    Borghesi, M. et al. Multi-MeV proton source investigations in ultraintense laser-foil interactions. Phys. Rev. Lett. 92, 055003 (2004).

    ADS  Article  Google Scholar 

  7. 7

    Fuchs, J. et al. Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators. Phys. Rev. Lett. 91, 255002 (2003).

    ADS  Article  Google Scholar 

  8. 8

    Borghesi, M. et al. Electric field detection in laser-plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9, 2214 (2002).

    ADS  Article  Google Scholar 

  9. 9

    Patel, P. et al. Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004 (2003).

    ADS  Article  Google Scholar 

  10. 10

    Bulanov, S. V. et al. Oncological hadrontherapy with laser ion accelerators. Phys. Lett. A 299, 240–247 (2002).

    ADS  Article  Google Scholar 

  11. 11

    Fourkal, E. et al. Particle in cell simulation of laser-accelerated proton beams for radiation therapy. Med. Phys. 29, 2788–2798 (2002).

    Article  Google Scholar 

  12. 12

    Malka, V. et al. Practicability of protontherapy using compact laser systems. Med. Phys. 31, 1587–1592 (2004).

    Article  Google Scholar 

  13. 13

    Ledingham, K., McKenna, P. & Singhal, R. Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 1107–1111 (2003).

    ADS  Article  Google Scholar 

  14. 14

    Ledingham, K. et al. High power laser production of short-lived isotopes for positron emission tomography. J. Phys. D 37, 2341–2345 (2004).

    ADS  Article  Google Scholar 

  15. 15

    McKenna, P. et al. Characterization of multiterawatt laser–solid interactions for proton acceleration. Rev. Sci. Instrum. 73, 4176–4184 (2002).

    ADS  Article  Google Scholar 

  16. 16

    Zepf, M. et al. Fast particle generation and energy transport in laser-solid interactions. Phys. Plasmas 8, 2323–2330 (2001).

    ADS  Article  Google Scholar 

  17. 17

    Spencer, I. et al. Laser generation of proton beams for the production of short-lived positron emission radioisotopes. Nucl. Instrum. Methods Phys. Res. B 183, 449–458 (2001).

    ADS  Article  Google Scholar 

  18. 18

    Spencer, I. et al. Experimental study of proton emission from 60-fs, 200-mJ high-repetition-rate tabletop-laser pulses interacting with solid targets. Phys. Rev. E 67, 046402 (2003).

    ADS  Article  Google Scholar 

  19. 19

    Oishi, Y. et al. Dependence on laser intensity and pulse duration in proton acceleration by irradiation of ultrashort laser pulses on a Cu foil target. Phys. Plasmas 12, 073102 (2005).

    ADS  Article  Google Scholar 

  20. 20

    Mackinnon, A. et al. Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. Phys. Rev. Lett. 88, 215006 (2002).

    ADS  Article  Google Scholar 

  21. 21

    Kaluza, M. et al. Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003 (2004).

    ADS  Article  Google Scholar 

  22. 22

    Hegelich, M. et al. MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002 (2002).

    ADS  Article  Google Scholar 

  23. 23

    Allen, M. et al. Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils. Phys. Rev. Lett. 93, 265004 (2004).

    ADS  Article  Google Scholar 

  24. 24

    Fuchs, J. et al. Comparison of laser ion acceleration from the front and rear surfaces of thin foils. Phys. Rev. Lett. 94, 045004 (2005).

    ADS  Article  Google Scholar 

  25. 25

    Silva, L. O. et al. Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 92, 015002 (2004).

    ADS  Article  Google Scholar 

  26. 26

    D’Humières, E., Lefebvre, E., Gremillet, L. & Malka, V. Proton acceleration mechanisms in high-intensity laser interaction with thin foils. Phys. Plasmas 12, 062704 (2005).

    ADS  Article  Google Scholar 

  27. 27

    Esirkepov, T., Borghesi, M., Bulanov, S., Mourou, G. & Tajima, T. Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003 (2004).

    ADS  Article  Google Scholar 

  28. 28

    Mora, P. Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002 (2003).

    ADS  Article  Google Scholar 

  29. 29

    Gurevich, A. V., Pariiskaya, L. V. & Pitaevskii, L. P. Self-similar motion of rarefied plasma. Sov. Phys. JETP 22, 449 (1966).

    ADS  Google Scholar 

  30. 30

    Wilks, S. C. et al. Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383–1386 (1992).

    ADS  Article  Google Scholar 

  31. 31

    Malka, G. & Miquel, J. L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77, 75–78 (1996).

    ADS  Article  Google Scholar 

  32. 32

    Key, M. et al. Hot electron production and heating by hot electrons in fast ignitor research. Phys. Plasmas 5, 1966–1972 (1998).

    ADS  Article  Google Scholar 

  33. 33

    Feurer, T. et al. Onset of diffuse reflectivity and fast electron flux inhibition in 528-nm-laser–solid interactions at ultrahigh intensity. Phys. Rev. E 56, 4608–4614 (1997).

    ADS  Article  Google Scholar 

  34. 34

    Fourkal, E. et al. Particle selection for laser-accelerated proton therapy feasibility study. Med. Phys. 30, 1660–1670 (2003).

    Article  Google Scholar 

  35. 35

    Esirkepov, T. et al. Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003 (2002).

    ADS  Article  Google Scholar 

  36. 36

    Khoroshkov, V. S. & Minakova, E. I. Proton beams in radiotherapy. Eur. J. Phys. 19, 523–536 (1998).

    Article  Google Scholar 

  37. 37

    Hein, J. et al. Diode-pumped chirped pulse amplification to the joule level. Appl. Phys. B 79, 419–422 (2004).

    Article  Google Scholar 

  38. 38

    Chanteloup, J. C. et al. Overview of the Lucia laser program: towards 100 Joules, nanosecond pulses, kW averaged power, based on Ytterbium diode pumped solid state laser. Proc. SPIE 5707, 105–116 (2005).

    ADS  Article  Google Scholar 

  39. 39

    Kessler, T. J. et al. Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers. Opt. Lett. 29, 635–637 (2004).

    ADS  Article  Google Scholar 

  40. 40

    Lefebvre, E. & Bonnaud, G. Nonlinear electron heating in ultrahigh-intensity-laser–plasma interaction. Phys. Rev. E 55, 1011–1014 (1997).

    ADS  Article  Google Scholar 

  41. 41

    Fuchs, J. et al. Transmission through highly overdense plasma slabs with a subpicosecond relativistic laser pulse. Phys. Rev. Lett. 80, 2326–2329 (1998).

    ADS  Article  Google Scholar 

  42. 42

    Monot, P. et al. High-order harmonic generation by nonlinear reflection of an intense high-contrast laser pulse on a plasma. Opt. Lett. 29, 893–895 (2004).

    ADS  Article  Google Scholar 

  43. 43

    Strickland, D. & Mourou, G. Compression of amplified chirped optical pulses. Opt. Commun. 56, 219–221 (1985).

    ADS  Article  Google Scholar 

  44. 44

    Klassen, N. V. et al. GafChromic MD-55: Investigated as a precision dosimeter. Med. Phys. 24, 1924–1934 (1997).

    Article  Google Scholar 

  45. 45

    Lefevre, H. W., Sealock, R. M. & Connolly, R. C. Response of CR-39 to 2-MeV microbeams of H, He, and Ne. Rev. Sci. Instrum. 53, 1221–1227 (1982).

    ADS  Article  Google Scholar 

  46. 46

    McKenna, P. et al. Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils. Phys. Rev. E 70, 036405 (2004).

    ADS  Article  Google Scholar 

  47. 47

    Murakami, Y. et al. Observation of proton rear emission and possible gigagauss scale magnetic fields from ultra-intense laser illuminated plastic target. Phys. Plasmas 8, 4138–4143 (2001).

    ADS  Article  Google Scholar 

  48. 48

    Maksimchuk, A. et al. High-energy ion generation by short laser pulses. Plasma Phys. Rep. 30, 473–495 (2004).

    ADS  Article  Google Scholar 

  49. 49

    Fujii, T. et al. MeV-order proton and carbon ion acceleration by irradiation of 60 fs TW laser pulses on thin copper tape. Appl. Phys. Lett. 83, 1524–1526 (2003).

    ADS  Article  Google Scholar 

  50. 50

    Mora, P. Thin foil expansion into a vaccum. Phys. Rev. E 72, 056401 (2005).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the expert support of the LULI and Atlas laser teams and useful discussion with T. Cowan, A. Kemp and Y. Sentoku. This work was supported by DAAD, grant E1127 from Région Ile-de-France, the EU programme HPRI CT 1999-0052, and UNR grant DE-FC08-01NV14050.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuchs, J., Antici, P., d’Humières, E. et al. Laser-driven proton scaling laws and new paths towards energy increase. Nature Phys 2, 48–54 (2006). https://doi.org/10.1038/nphys199

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing