Letter | Published:

Probing collective multi-electron dynamics in xenon with high-harmonic spectroscopy

Nature Physics volume 7, pages 464467 (2011) | Download Citation

This article has been updated

Abstract

High-harmonic spectroscopy provides a unique insight into the electronic structure of atoms and molecules1,2,3,4,5. Although attosecond science holds the promise of accessing the timescale of electron–electron interactions, until now, their signature has not been seen in high-harmonic spectroscopy. We have recorded high-harmonic spectra of atoms to beyond 160 eV, using a new, almost ideal laser source with a wavelength of 1.8 μm and a pulse duration of less than two optical cycles. We show that we can relate these spectra to differential photoionization cross-sections measured with synchrotron sources. In addition, we show that the high-harmonic spectra contain features due to collective multi-electron effects involving inner-shell electrons, in particular the giant resonance in xenon. We develop a new theoretical model based on the strong-field approximation and show that it is in agreement with the experimental observations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 07 March 2011

    In the version of this Letter originally published online, the affiliation for the first author, A. D. Shiner, was given incorrectly. This has now been corrected for all versions of the Letter.

References

  1. 1.

    et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

  2. 2.

    , , , & Quantitative rescattering theory for high-order harmonic generation from molecules. Phys. Rev. A 80, 013401 (2009).

  3. 3.

    , , , & High harmonic generation from aligned molecules—amplitude and polarization. J. Mod. Optics 55, 2591–2602 (2008).

  4. 4.

    , , , & Observation of electronic structure minima in high-harmonic generation. Phys. Rev. Lett. 102, 103901 (2009).

  5. 5.

    et al. Attosecond imaging of molecular electronic wavepackets. Nature Phys. 6, 200–206 (2010).

  6. 6.

    Photoabsorption, Photoionization and Photoelectron Spectroscopy (Academic, 1979).

  7. 7.

    , , , & Handbook of HeI Photoelectron Spectra (Japan Scientific Societies Press, 1981).

  8. 8.

    Becker, U. & Shirley, D. A. (eds) VUV and Soft X-Ray Photoionization (Plenum Press, 1996).

  9. 9.

    et al. Probing orbital structure of polyatomic molecules by high-order harmonic generation. Phys. Rev. Lett. 98, 203007 (2007).

  10. 10.

    et al. Probing proton dynamics in molecules on an attosecond timescale. Science 312, 424–427 (2006).

  11. 11.

    et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

  12. 12.

    , , , & Following a chemical reaction using high-harmonic spectroscopy. Nature 466, 604–607 (2010).

  13. 13.

    Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

  14. 14.

    , , & Probing molecular frame photoionization via laser generated high-order harmonics from aligned molecules. Phys. Rev. Lett. 102, 203001 (2009).

  15. 15.

    et al. Analytic description of the high-energy plateau in harmonic generation by atoms: Can the harmonic power increase with increasing laser wavelengths? Phys. Rev. Lett. 102, 243901 (2009).

  16. 16.

    High-order harmonic generation in a laser plasma: A review of recent achievements. J. Phys. B 40, R213–R253 (2007).

  17. 17.

    , & Potential barrier effects in high-order harmonic generation by transition-metal ions. Phys. Rev. A 82, 023424 (2010).

  18. 18.

    et al. Compression of 1.8 μm laser pulses to sub two optical cycles with bulk material. Appl. Phys. Lett. 96, 121109 (2010).

  19. 19.

    , , & Analytic formulae for high harmonic generation. J. Phys. B 42, 035601 (2009).

  20. 20.

    & Quantum Mechanics Non-Relativistic Theory 3 edn (Course of Theoretical Physics, vol. 3, Pergamon Press, 1977).

  21. 21.

    , & Theoretical photoionization parameters for the noble gases argon, krypton, and xenon. At. Nucl. Data Tables 26, 33–45 (1981).

  22. 22.

    et al. Retrieving photorecombination cross sections of atoms from high-order harmonic spectra. Phys. Rev. A 78, 061402(R) (2008).

  23. 23.

    & The theory of collective motion probed by light. Rep. Prog. Phys. 63, 41–70 (2000).

  24. 24.

    et al. Subshell photoionization of Xe between 40 and 1,000 eV. Phys. Rev. A 39, 3902–3911 (1989).

  25. 25.

    , & Extended photoionization calculations for xenon. Phys. Rev. A 40, 5052–5057 (1989).

  26. 26.

    et al. Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum. Proc. Natl Acad. Sci. USA 106, 10516–10521 (2009).

  27. 27.

    et al. High-order harmonics generated by 1.5 μm parametric source. J. Mod. Opt. 57, 1008–1013 (2010).

  28. 28.

    et al. Delay in photoemission. Science 328, 1658–1662 (2010).

  29. 29.

    et al. Wavelength scaling of high harmonic generation efficiency. Phys. Rev. Lett. 103, 073902 (2009).

  30. 30.

    , , & Calibration of a high harmonic spectrometer by laser induced plasma emission. Opt. Express 17, 15134–15144 (2009).

  31. 31.

    , , & Xe 5s, 5p correlation satellites in the region of strong interchannel interactions, 28–75 eV. Phys. Rev. A 30, 812–819 (1984).

Download references

Acknowledgements

The authors thank laser technicians F. Poitras and A. Laramée for their dedicated work on the laser system, and gratefully acknowledge financial support from NSERC, AFOSR, CIPI and FQRNT. We thank U. Becker, M. Spanner and T. Starace for illuminating discussions.

Author information

Author notes

    • A. D. Shiner
    •  & B. E. Schmidt

    These authors contributed equally to this work

Affiliations

  1. Joint Attosecond Science Laboratory, National Research Council of Canada and University of Ottawa, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada

    • A. D. Shiner
    • , B. E. Schmidt
    • , C. Trallero-Herrero
    • , H. J. Wörner
    • , S. Patchkovskii
    • , P. B. Corkum
    •  & D. M. Villeneuve
  2. Institut National de la Recherche Scientifique, 1650 boul. Lionel-Boulet, Varennes, Québec J3X 1S2, Canada

    • B. E. Schmidt
    • , J-C. Kieffer
    •  & F. Légaré
  3. J. R. Macdonald Lab, Physics Department, Kansas State University, Manhattan, Kansas 66506, USA

    • C. Trallero-Herrero
  4. Labortorium für Physikalische Chemie, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland

    • H. J. Wörner

Authors

  1. Search for A. D. Shiner in:

  2. Search for B. E. Schmidt in:

  3. Search for C. Trallero-Herrero in:

  4. Search for H. J. Wörner in:

  5. Search for S. Patchkovskii in:

  6. Search for P. B. Corkum in:

  7. Search for J-C. Kieffer in:

  8. Search for F. Légaré in:

  9. Search for D. M. Villeneuve in:

Contributions

A.D.S. and B.E.S. contributed equally to this work. B.E.S., F.L. and J-C.K. developed the laser source. A.D.S., B.E.S. and C.T.H. carried out the experiments. H.J.W. interpreted the xenon results. A.D.S. analysed the data. S.P. and D.M.V. provided the theoretical parts. A.D.S., H.J.W., P.B.C. and D.M.V. wrote the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to D. M. Villeneuve.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphys1940

Further reading