Creation and measurement of long-lived magnetic monopole currents in spin ice


The recent discovery of ‘magnetricity’ in spin ice raises the question of whether long-lived currents of magnetic ‘monopoles’ can be created and manipulated by applying magnetic fields. Here we show that they can. By applying a magnetic-field pulse to a Dy2Ti2O7 spin-ice crystal at 0.36 K, we create a relaxing magnetic current that lasts for several minutes. We measure the current by means of the electromotive force it induces in a solenoid coupled to a sensitive amplifier, and quantitatively describe it using a chemical kinetic model of point-like charges obeying the Onsager–Wien mechanism of carrier dissociation and recombination. We thus derive the microscopic parameters of monopole motion in spin ice and identify the distinct roles of free and bound magnetic charges. Our results illustrate a basic capacitor effect for magnetic charge and should pave the way for the design and realization of ‘magnetronic’ circuitry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Distance dependence of magnetic monopole interactions in spin ice.
Figure 2: An effective capacitor discharge for magnetic monopoles in spin ice.
Figure 3: Demonstration of the requirement for the chemical kinetic model at T=360 mK and its breakdown at higher temperature.
Figure 4: A near-perfect symmetry between electricity and magnetism illustrated by data collapse onto Onsager’s universal curve for the Wien effect16.


  1. 1

    Bonitz, M., Henning, C. & Block, D. Complex plasmas: A laboratory for strong correlations. Rep. Prog. Phys. 73, 066501 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Hansen, J. P. & McDonald, I. R. Theory of Simple Liquids (Academic, 1986).

    Google Scholar 

  3. 3

    Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    ADS  Article  Google Scholar 

  4. 4

    Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    ADS  Article  Google Scholar 

  5. 5

    Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. B. & Shastry, S. Zero-point entropy in spin ice. Nature 399, 333–335 (1999).

    ADS  Article  Google Scholar 

  6. 6

    Melko, R. G. & Gingras, M. J. P. Monte Carlo studies of the dipolar spin ice model. J. Phys. Condens. Matter 16, R1277–R1319 (2004).

    ADS  Article  Google Scholar 

  7. 7

    Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    ADS  Article  Google Scholar 

  8. 8

    Ryzhkin, I. A. Magnetic relaxation in rare-earth pyrochlores. J. Exp. Theor. Phys. 101, 481–486 (2005).

    ADS  Article  Google Scholar 

  9. 9

    Nussinov, Z., Batista, C. D., Normad, B. & Trugman, S. A. High-dimensional fractionalization and spinon deconfinement in pyrochlore antiferromagnets. Phys. Rev. B 75, 094411 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Jaubert, L. D. C. & Holdsworth, P. C. W. Signature of magnetic monopole and Dirac string dynamics in spin ice. Nature Phys. 5, 258–261 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7 . Science 326, 415–417 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Morris, D. J. P. et al. Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7 . Science 326, 411–414 (2009).

    ADS  Article  Google Scholar 

  14. 14

    Kadowaki, H. et al. Observation of magnetic monopoles in spin ice. J. Phys. Soc. Jpn 78, 103706 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Castelnovo, C. Coulomb physics in spin ice: From magnetic monopoles to magnetic currents. Chem. Phys. Phys. Chem. 11, 557–559 (2010).

    Article  Google Scholar 

  16. 16

    Onsager, L. Deviations from Ohm’s law in weak electrolytes. J. Chem. Phys. 2, 599–615 (1934).

    ADS  Article  Google Scholar 

  17. 17

    Pearson, R. G. Rates of ion recombination in solution by a radio-frequency dispersion method. Discuss. Faraday Soc. 17, 187–193 (1954).

    Article  Google Scholar 

  18. 18

    Eigen, M. & Demaeyer, L. Self-dissociation and protonic charge transport in water and ice. Proc. R. Soc. Lond. A 247, 505–533 (1958).

    ADS  Article  Google Scholar 

  19. 19

    Bouchaud, J. P., Cugliandolo, L. F., Kurchan, J. & Mézard, M. in Spin Glasses and Random Fields Vol 12 (ed. Young, A. P.) (World Scientific, 1998).

    Google Scholar 

  20. 20

    Read, D., Giblin, S. R. & Terry, I. Low temperature magnetic susceptometer based upon a d.c. superconducting quantum interference device. Rev. Sci. Instrum. 77, 103906 (2006).

    ADS  Article  Google Scholar 

  21. 21

    Bjerrum, N. Untersuchungen über Ionenassoziation. Kgl. Danske Vidensk. Selsk., Math.-fys. Medd. 7, 1–48 (1926).

    Google Scholar 

  22. 22

    Jaubert, L. D. C. Topological Constraints and Defects in Spin Ice. PhD thesis, École Normale Supérieure de Lyon (2009).

  23. 23

    Camp, P. J. & Patey, G. N. Ion association in model ionic fluids. Phys. Rev. E 60, 1063–1066 (1999).

    ADS  Article  Google Scholar 

  24. 24

    Snyder, J. et al. Low-temperature spin freezing in the Dy2Ti2O7 spin ice. Phys. Rev. B 69, 064414 (2004).

    ADS  Article  Google Scholar 

  25. 25

    Onsager, L. & Liu, C. T. Zur Theorie des Wieneffekts in schwachen Elektrolyten. Z. Phys. Chem. 228, 428–432 (1965).

    Article  Google Scholar 

  26. 26

    Braünig, R., Gushimana, Y. & Ilgenfritz, G. Ionic-strength dependence of the electric dissociation field-effect—investigation of 2,6-dinitrophenol and application to the acid–alkaline transition of metmyoglobin and methemoglobin. Biophys. Chem. 26, 181–191 (1987).

    Article  Google Scholar 

  27. 27

    Castelnovo, C., Moessner, R. & Sondhi, S. L. Thermal quenches in spin ice. Phys. Rev. Lett. 104, 107201 (2010).

    ADS  Article  Google Scholar 

  28. 28

    Yavorskii, T., Fennell, T., Gingras, M. J. P. & Bramwell, S. T. Dy2Ti2O7 spin ice: A test case for emergent clusters in a frustrated magnet. Phys. Rev. Lett. 101, 037204 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Fennell, T. et al. Neutron scattering studies of the spin ices Ho2Ti2O7 and Dy2Ti2O7 in applied magnetic field. Phys. Rev. B 72, 224411 (2005).

    ADS  Article  Google Scholar 

  30. 30

    Orendáč, M. et al. Magnetocaloric study of spin relaxation in dipolar spin ice Dy2Ti2O7 . Phys. Rev. B. 75, 104425 (2007).

    ADS  Article  Google Scholar 

  31. 31

    Gledhill, J. A. & Patterson, A. A new method for measurement of the high field conductance of electrolytes (The Wien effect). J. Phys. Chem. 56, 999–1005 (1952).

    Article  Google Scholar 

  32. 32

    Mydosh, J. A. Spin Glasses: An Experimental Introduction Ch. 3 (Taylor and Francis, 1993).

    Google Scholar 

  33. 33

    Lee, S-H. et al. Emergent excitations in a geometrically frustrated magnet. Nature 418, 856–858 (2002).

    ADS  Article  Google Scholar 

  34. 34

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    ADS  Article  Google Scholar 

  35. 35

    Henley, C. L. The Coulomb phase in frustrated systems. Annu. Rev. Condens. Matter Phys. 1, 179–210 (2010).

    ADS  Article  Google Scholar 

  36. 36

    Wang, R. F. et al. Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands. Nature 439, 303–306 (2006).

    ADS  Article  Google Scholar 

  37. 37

    Ladak, S., Read, D. E., Perkins, G. K., Cohen, L. F. & Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nature Phys. 6, 359–363 (2010).

    ADS  Article  Google Scholar 

  38. 38

    Mengotti, E. et al. Real-space observation of emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nature Phys. 7, 68–74 (2011).

    ADS  Article  Google Scholar 

  39. 39

    Weingärtner, H., Weiss, V. C. & Schröer, W. Ion association and electrical conductance minimum in Debye–Hückel-based theories of the hard sphere ionic fluid. J. Chem. Phys. 113, 762–770 (2000).

    ADS  Article  Google Scholar 

  40. 40

    Prabhakaran, D & Boothroyd, A. T. Crystal growth of spin-ice pyrochlores by the floating-zone method. J. Cryst. Growth 10.1016/j.jcrysgro.2010.11.049 (2010).

Download references


It is a pleasure to thank J. Dobson for technical assistance and the following for useful discussions: C. Castelnovo and R. Moessner (in particular for a correspondence concerning the Bjerrum volume), G. Aeppli, B. Kaas, T. Fennell, L. Jaubert and V. Kaiser. P.C.W.H. thanks the Max Planck Institute for Complex Systems, Dresden, for financial support.

Author information




The experimental work was carried out by S.R.G. and I.T., using a sample prepared by D.P. The analysis was carried out by S.T.B. and S.R.G. The theory was devised by S.T.B. and P.C.W.H. The manuscript was written by S.T.B., S.R.G. and P.C.W.H. with input and discussion from all authors.

Corresponding authors

Correspondence to S. R. Giblin or S. T. Bramwell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giblin, S., Bramwell, S., Holdsworth, P. et al. Creation and measurement of long-lived magnetic monopole currents in spin ice. Nature Phys 7, 252–258 (2011).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing