Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-power laser delocalization in plasmas leading to long-range beam merging

Abstract

Attraction and fusion between co-propagating light beams, mutually coherent or not, can take place in nonlinear media as a result of the beam power modifying the refractive index of the medium. In the context of high-power light beams, induced modifications of the beam patterns could potentially impact many topics, including long-range laser propagation, the study of astrophysical colliding blast waves and inertial confinement fusion. Here, through experiments and simulations, we show that in a fully ionized plasma, which is a nonlinear medium, beam merging can take place for high-power and mutually incoherent beams that are initially separated by several beam diameters. This is in contrast to the usual assumption that this type of interaction is limited to beams separated by only one beam diameter. This effect, which is orders of magnitude more significant than Kerr-like nonlinearity in gases, demonstrates the importance of potential cross-talk amongst multiple beams in plasma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Delocalization of a high-power single laser beam propagating through a low-density plasma compared with stable propagation in vacuum.
Figure 2: Temporal dynamics of two parallel beams propagating in a 0.016nc plasma for two initial separation distances.
Figure 3: Plasma channel expansion allowing, or not, the formation of a common waveguide for two laser beams to merge.
Figure 4: 2D CHIC simulations of the plasma hydrodynamic evolution in a plane transverse to the beam propagation, showing the mechanism leading to plasma channel merging.
Figure 5: Behaviour of two beams coupling when the plasma density is increased.
Figure 6: Quantitative measurement of beam coupling in a plasma as a function of the mutual distance between the two beams and the plasma density.

Similar content being viewed by others

References

  1. Stegeman, G. & Segev, M. Optical spatial solitons and their interactions: Universality and diversity. Science 286, 1518–1523 (1999).

    Article  Google Scholar 

  2. Meng, H., Salamo, G., Shih, M. & Segev, M. Coherent collisions of photorefractive solitons. Opt. Lett. 22, 448–450 (1997).

    Article  ADS  Google Scholar 

  3. Krolikowski, W. & Holmstrom, S. Fusion and birth of spatial solitons upon collision. Opt. Lett. 22, 369–371 (1997).

    Article  ADS  Google Scholar 

  4. Shih, M. & Segev, M. Incoherent collisions between two-dimensional bright steady-state photorefractive spatial screening solitons. Opt. Lett. 21, 1538–1540 (1996).

    Article  ADS  Google Scholar 

  5. Synder, A. W. & Mitchell, D. J. Accessible solitons. Science 276, 1538–1541 (1997).

    Article  Google Scholar 

  6. Rotschild, C., Alfassi, B., Cohen, C. & Segev, M. Long-range interactions between optical solitons. Nature Phys. 2, 769–774 (2006).

    Article  ADS  Google Scholar 

  7. Tzortzakis, S. et al. Breakup and fusion of self-guided femtosecond light pulses in air. Phys. Rev. Lett. 86, 5470–5473 (2001).

    Article  ADS  Google Scholar 

  8. Xi, T. et al. Interaction of light filaments generated by femtosecond laser pulses in air. Phys. Rev. Lett. 96, 025003 (2006).

    Article  ADS  Google Scholar 

  9. Kruer, W. Ponderomotive and thermal filamentation of laser light. Comments Plasma. Phys. Control. Fusion 9, 63–72 (1985).

    Google Scholar 

  10. Tikhonchuk, V. T. et al. Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. II. Model description and comparison with experiments. Phys. Plasmas 8, 1636–1649 (2001).

    Article  ADS  Google Scholar 

  11. Rose, H. A. & DuBois, D. F. Laser hot spots and the breakdown of linear instability theory with application to stimulated Brillouin scattering. Phys. Rev. Lett. 72, 2883–2886 (1994).

    Article  ADS  Google Scholar 

  12. Hüller, S. et al. Interaction of two neighboring laser beams taking into account the effects of plasma hydrodynamics. Phys. Plasmas 4, 2670–2680 (1997).

    Article  ADS  Google Scholar 

  13. Ren, C. et al. On the mutual interaction between laser beams in plasmas. Phys. Plasmas 9, 2354–2363 (2002).

    Article  ADS  Google Scholar 

  14. Shukla, P. et al. Instability and dynamics of two nonlinearly coupled laser beams in a plasma. Phys. Plasmas 13, 053104 (2006).

    Article  ADS  Google Scholar 

  15. Williams, E. On the control of filamentation of intense laser beams propagating in underdense plasma. Phys. Plasmas 13, 056310 (2006).

    Article  ADS  Google Scholar 

  16. Wattellier, B. et al. Generation of a single hot spot by use of a deformable mirror and study of its propagation in an underdense plasma. J. Opt. Soc. Am. B 20, 1632–1642 (2003).

    Article  ADS  Google Scholar 

  17. Young, P. et al. Observations of laser-beam bending due to transverse plasma flow. Phys. Rev. Lett. 81, 1425–1428 (1998).

    Article  ADS  Google Scholar 

  18. Montgomery, D. et al. Flow-induced beam steering in a single laser hot spot. Phys. Rev. Lett. 84, 678–681 (2000).

    Article  ADS  Google Scholar 

  19. Labaune, C. et al. Laser-plasma interaction in the context of inertial fusion: Experiments and modelling. Eur. Phys. J. D 44, 283–288 (2007).

    Article  ADS  Google Scholar 

  20. Glenzer, S. et al. Experiments and multiscale simulations of laser propagation through ignition-scale plasmas. Nature Phys. 3, 716–719 (2007).

    Article  ADS  Google Scholar 

  21. Denavit, J. & Phillion, D. W. Laser ionization and heating of gas targets for long-scale-length instability experiments. Phys. Plasmas 1, 1971–1984 (1994).

    Article  ADS  Google Scholar 

  22. de Wispelaere, E. et al. Formation of plasma channels in the interaction of a nanosecond laser pulse at moderate intensities with helium gas jets. Phys. Rev. E 59, 7110–7120 (1999).

    Article  ADS  Google Scholar 

  23. Malka, V. et al. Strong self-focusing in quasi-stationary laser plasmas. Phys. Plasmas 7, 4259–4265 (2000).

    Article  ADS  Google Scholar 

  24. Valeo, E. J. & Estabrook, K. G. Stability of the critical surface in irradiated plasma. Phys. Rev. Lett. 34, 1008–1011 (1975).

    Article  ADS  Google Scholar 

  25. Pesme, D. et al. Resonant instability of laser filaments in a plasma. Phys. Rev. Lett. 84, 278–281 (2000).

    Article  ADS  Google Scholar 

  26. Michel, P. et al. Studies of the laser filament instability in a semicollisional plasma. Phys. Plasmas 7, 3545–3553 (2003).

    Article  ADS  Google Scholar 

  27. Myatt, J. et al. Nonlinear propagation of a randomized laser beam through an expanding plasma. Phys. Rev. Lett. 87, 255003 (2001).

    Article  ADS  Google Scholar 

  28. Johnson, L. & Chu, T. Measurements of electron density evolution and beam self-focusing in a laser-produced plasma. Phys. Rev. Lett. 32, 517–520 (1974).

    Article  ADS  Google Scholar 

  29. Fuchs, J. et al. Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma. Phys. Rev. Lett. 86, 432–435 (2001).

    Article  ADS  Google Scholar 

  30. Epperlein, E. M. Kinetic theory of laser filamentation in plasmas. Phys. Rev. Lett. 65, 2145–2148 (1990).

    Article  ADS  Google Scholar 

  31. Epperlein, E. M. & Short, R. W. Nonlocal heat transport effects on the filamentation of light in plasmas. Phys. Fluids B 4, 2211–2216 (1992).

    Article  ADS  Google Scholar 

  32. Berger, R. L., Valeo, E. J. & Brunner, S. The transition from thermally driven to ponderomotively driven stimulated Brillouin scattering and filamentation of light in plasma. Phys. Plasmas 12, 062508 (2005).

    Article  ADS  Google Scholar 

  33. Chessa, P. et al. Temporal and angular resolution of the ionization-induced refraction of a short laser pulse in helium gas. Phys. Rev. Lett. 82, 552–555 (1999).

    Article  ADS  Google Scholar 

  34. Mitchell, M., Chen, Z., Shih, M. & Segev, M. Self-trapping of partially spatially incoherent light. Phys. Rev. Lett. 77, 490–493 (1996).

    Article  ADS  Google Scholar 

  35. Kruer, W. L. Nonlinear estimates of Brillouin scatter in plasma. Phys. Fluids 23, 1273–1275 (1980).

    Article  ADS  Google Scholar 

  36. Pesme, D. et al. Laser–plasma interaction studies in the context of megajoule lasers for inertial fusion. Plasma Phys. Control. Fusion 44, B53–B67 (2002).

    Article  Google Scholar 

  37. Atzeni, S. & Meyer-ter-Vehn, J. The Physics of Inertial Fusion (Oxford Univ. Press, 2009).

    Google Scholar 

  38. Kodama, R. et al. Development of a two-dimensional space-resolved high speed sampling camera. Rev. Sci. Inst. 70, 625–628 (1999).

    Article  ADS  Google Scholar 

  39. Maire, P-H., Abgrall, R., Breil, J. & Ovadia, J. A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput. 29, 1781–1824 (2007).

    Article  MathSciNet  Google Scholar 

  40. Breil, J. & Maire, P-H. A cell-centred diffusion scheme on two-dimensional unstructured meshes. J. Comput. Phys. 224, 785–823 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  41. Schurtz, G. et al. Revisiting nonlocal electron-energy transport in inertial-fusion conditions. Phys. Rev. Lett. 98, 095002 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the LULI teams and discussions with F. Amiranoff, L. Bergé, S. N. Chen, S. Hüller, M. Grech, S. Weber, J. P. Zou and Y. Sakawa. This work was supported by grant E1127 from Région Ile-de-France and by the CEA-EURATOM association as an IFE ‘keep-in-touch’ activity and by the Marie-Curie Actions programme from the EU community. M.N. was partially supported by JSPS Postdoctoral Fellowships for Research Abroad.

Author information

Authors and Affiliations

Authors

Contributions

M.N. (on leave from Osaka University, supervised by R.K.), J-R.M., P. Antici, N.B., T.L., L.R. and J.F. carried out the experiments, M.N., J-R.M. and J.F. analysed the data and wrote the paper with discussions with R.K. and P. Audebert, J.L.F. and P.N. carried out the numerical simulations, J.F. planned the project.

Corresponding author

Correspondence to J. Fuchs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (AVI 695 kb)

Supplementary Information

Supplementary Information (AVI 886 kb)

Supplementary Information

Supplementary Information (AVI 1425 kb)

Supplementary Information

Supplementary Information (AVI 720 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakatsutsumi, M., Marquès, JR., Antici, P. et al. High-power laser delocalization in plasmas leading to long-range beam merging. Nature Phys 6, 1010–1016 (2010). https://doi.org/10.1038/nphys1788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1788

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing