Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum critical states and phase transitions in the presence of non-equilibrium noise

Abstract

Quantum critical points are characterized by scale-invariant correlations and therefore by long-range entanglement. As such, they present fascinating examples of quantum states of matter and their study is an important theme in modern physics. However, little is known about the fate of quantum criticality under non-equilibrium conditions. Here we investigate the effect of external noise sources on quantum critical points. It is natural to expect that noise will have a similar effect to finite temperature, that is, destroying the subtle correlations underlying the quantum critical behaviour. Surprisingly, we find that the ubiquitous 1/f noise does preserve the critical correlations. The emergent states show an intriguing interplay of intrinsic quantum critical and external-noise-driven fluctuations. We illustrate this general phenomenon with specific examples describing solid-state and ultracold-atoms systems. Moreover, our approach shows that genuine quantum phase transitions can exist even under non-equilibrium conditions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Effects of non-equilibrium noise on the localization quantum phase transition of a single shunted Josephson junction:
Figure 2: Effects of non-equilibrium noise on the response to Bragg spectroscopy.

References

  1. Winkler, K. et al. Coherent optical transfer of Feshbach molecules to a lower vibrational state. Phys. Rev. Lett 98, 043201 (2007).

    ADS  Article  Google Scholar 

  2. Ni, K-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    ADS  Article  Google Scholar 

  3. Blatt, R. & Wineland, D. J. Entangled states of trapped atomic ions. Nature 453, 1008–1015 (2008).

    ADS  Article  Google Scholar 

  4. Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Article  Google Scholar 

  5. Porras, D. & Cirac, J. I. Effective quantum spin systems with trapped ions. Phys. Rev. Lett. 92, 207901 (2004).

    ADS  Article  Google Scholar 

  6. García-Mata, I., Zhirov, O. & Shepelyansky, D. Frenkel–Kontorova model with cold trapped ions. Eur. Phys. J. D 41, 325–330 (2007).

    ADS  Article  Google Scholar 

  7. Deslauriers, L. et al. Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006).

    ADS  Article  Google Scholar 

  8. Labaziewicz, J. et al. Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008).

    ADS  Article  Google Scholar 

  9. Schmidt, A. Diffusion and localization in a dissipative quantum system. Phys. Rev. Lett. 51, 1506–1509 (1983).

    ADS  Article  Google Scholar 

  10. Chakravarty, S. Quantum fluctuations in the tunneling between superconductors. Phys. Rev. Lett. 49, 681–684 (1982).

    ADS  Article  Google Scholar 

  11. Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

    ADS  Article  Google Scholar 

  12. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS  Article  Google Scholar 

  13. Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

    ADS  Article  Google Scholar 

  14. Mitra, A., Takei, S., Kim, Y. B. & Millis, A. J. Nonequilibrium quantum criticality in open electronic systems. Phys. Rev. Lett. 97, 236808 (2006).

    ADS  Article  Google Scholar 

  15. Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

    ADS  Article  Google Scholar 

  16. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999).

    MATH  Google Scholar 

  17. Sondhi, S. L., Girvin, S. M., Carini, J. P. & Shahar, D. Continuous quantum phase transitions. Rev. Mod. Phys. 69, 315–333 (1997).

    ADS  Article  Google Scholar 

  18. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2004).

    MATH  Google Scholar 

  19. Morigi, G. & Fishman, S. Eigenmodes and thermodynamics of a Coulomb chain in a harmonic potential. Phys. Rev. Lett. 93, 170602 (2004).

    ADS  Article  Google Scholar 

  20. Antal, T., Rácz, Z. & Sasvári, L. Nonequilibrium steady state in a quantum system: One-dimensional transverse Ising model with energy current. Phys. Rev. Lett. 78, 167–170 (1997).

    ADS  Article  Google Scholar 

  21. Feldman, D. E. Nonequilibrium quantum phase transition in itinerant electron systems. Phys. Rev. Lett. 95, 177201 (2005).

    ADS  Article  Google Scholar 

  22. Zimmerli, G., Eiles, T. M., Kautz, R. L. & Martinis, J. M. Noise in the coulomb blockade electrometer. Appl. Phys. Lett. 61, 237–239 (1992).

    ADS  Article  Google Scholar 

  23. Cladeira, A. O. & Leggett, A. J. Path integral approach to quantum Brownian motion. Physica A 121, 587–616 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  24. Fisher, M. P. A. & Zwerger, W. Quantum Brownian motion in a periodic potential. Phys. Rev. B 32, 6190–6206 (1985).

    ADS  Article  Google Scholar 

  25. Haldane, F. D. M. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840–1843 (1981).

    ADS  Article  Google Scholar 

  26. Daley, A. J., Fedichev, P. O. & Zoller, P. Single-atom cooling by superfluid immersion: A nondestructive method for qubits. Phys. Rev. A 69, 022306 (2004).

    ADS  Article  Google Scholar 

  27. Polkovnikov, A., Altman, E. & Demler, E. Interference between independent fluctuating condensates. Proc. Natl Acad. Sci. USA 103, 6125–6129 (2006).

    ADS  Article  Google Scholar 

  28. Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. Phys. Rev. Lett. 82, 4569–4573 (1999).

    ADS  Article  Google Scholar 

  29. Steinhauer, J. et al. Bragg spectroscopy of the multibranch Bogoliubov spectrum of elongated Bose–Einstein condensates. Phys. Rev. Lett. 90, 060404 (2002).

    Article  Google Scholar 

  30. Clément, D., Fabbri, N., Fallani, L., Fort, C. & Inguscio, M. Exploring correlated 1d Bose gases from the superfluid to the Mott-insulator state by inelastic light scattering. Phys. Rev. Lett. 102, 155301 (2009).

    ADS  Article  Google Scholar 

  31. Kane, C. L. & Fisher, M. P. A. Transmission through barriers and resonant tunneling in an interacting one-dimensional electron gas. Phys. Rev. B 46, 15233–15262 (1992).

    ADS  Article  Google Scholar 

  32. Kollath, C., Meyer, J. S. & Giamarchi, T. Dipolar bosons in a planar array of one-dimensional tubes. Phys. Rev. Lett. 100, 130403 (2008).

    ADS  Article  Google Scholar 

  33. Refael, G., Demler, E., Oreg, Y. & Fisher, D. S. Superconductor-to-normal transitions in dissipative chains of mesoscopic grains and nanowires. Phys. Rev. B 75, 014522 (2007).

    ADS  Article  Google Scholar 

  34. Kamenev, A. & Levchenko, A. Keldysh technique and non-linear sigma-model: Basic principles and applications. Adv. Phys. 58, 197–319 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank E. Berg, S. Huber, S. Kivelson, A. Lamacraft, K. Moler and E. Zeldov for stimulating discussions. This work was partially supported by the US–Israel BSF (E.A. and E.D.), ISF (E.A.) and Swiss SNF under MaNEP and division II (T.G.). E.D. acknowledges support from NSF DMR-0705472, CUA, DARPA-OLE and AFOSR-MURI. E.G.D.T. is supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Ehud Altman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 213 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dalla Torre, E., Demler, E., Giamarchi, T. et al. Quantum critical states and phase transitions in the presence of non-equilibrium noise. Nature Phys 6, 806–810 (2010). https://doi.org/10.1038/nphys1754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1754

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing