Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How grain boundaries limit supercurrents in high-temperature superconductors

Abstract

The interface properties of high-temperature (high-Tc) copper oxide superconductors have been of interest for many years, and play an essential role in Josephson junctions, superconducting cables and microwave electronics. In particular, the maximum critical current achievable in high-Tc wires and tapes is well known to be limited by the presence of grain boundaries, regions of mismatch between crystallites with misoriented crystalline axes. Studies of single artificially fabricated grain boundaries have revealed that the critical current Jc of a grain boundary junction depends exponentially on the misorientation angle. Until now microscopic understanding of this apparently universal behaviour has been lacking. We present here the results of a microscopic evaluation based on a construction of fully three-dimensional YBa2Cu3O7−δ grain boundaries using molecular dynamics. With these structures, we calculate an effective tight-binding Hamiltonian for the d-wave superconductor with a grain boundary. The critical current is then shown to follow an exponential suppression with grain boundary angle α. We identify the build-up of charge inhomogeneities as the dominant mechanism for the suppression of the supercurrent.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic diagram of an HTS symmetric grain boundary.
Figure 2: Top view of a calculated (410) grain boundary.
Figure 3: Tight-binding model for the CuO2 plane.
Figure 4: Charging of the CuO4 squares.
Figure 5: Supercurrent distribution.
Figure 6: Angle dependence of the critical current.

References

  1. 1

    Hilgenkamp, H. & Mannhart, J. Grain boundaries in high-Tc superconductors. Rev. Mod. Phys. 74, 485–549 (2002).

    ADS  Article  Google Scholar 

  2. 2

    Dimos, D., Chaudhari, P., Mannhart, J. & LeGoues, F. K. Orientation dependence of grain-boundary critical currents in YBa2Cu3O7−δ bicrystals. Phys. Rev. Lett. 61, 219–222 (1988).

    ADS  Article  Google Scholar 

  3. 3

    Chaudhari, P., Dimos, D. & Mannhart, J. in Earlier and Recent Aspects of Superconductivity (eds Bednorz, J. G. & Müller, K. A.) 201–207 (Springer, 1990).

    Book  Google Scholar 

  4. 4

    Sigrist, M. & Rice, T. M. Paramagnetic effect in high Tc superconductors —a hint for d-wave superconductivity. J. Phys. Soc. Jpn 61, 4283–4286 (1992).

    ADS  Article  Google Scholar 

  5. 5

    Sigrist, M. & Rice, T. M. On the phenomenology of superconductivity in cuprate materials. J. Low Temp Phys. 95, 389–393 (1994).

    ADS  Article  Google Scholar 

  6. 6

    Yokoyama, T., Sawa, Y., Tanaka, Y. & Golubov, A. A. Angular dependence of Josephson currents in unconventional superconducting junctions. Phys. Rev. B 75, 020502(R) (2007).

    ADS  Article  Google Scholar 

  7. 7

    Gurevich, A. & Pashitskii, E. A. Current transport through low-angle grain boundaries in high-temperature superconductors. Phys. Rev. B. 57, 13878–13893 (1998).

    ADS  Article  Google Scholar 

  8. 8

    Stolbov, S. V., Mironova, M. K. & Salama, K. Microscopic origins of the grain boundary effect on the critical current in superconducting copper oxides. Supercond. Sci. Technol. 12, 1071–1074 (1999).

    ADS  Article  Google Scholar 

  9. 9

    Pennycook, S. J. et al. in Studies of High Temperature Superconductors: Microstructures and Related Studies of High Temperature Superconductors-II Vol. 30 (ed. Narlikar, A. V.) Ch. 6 (Nova Science Publishers, 2000).

    Google Scholar 

  10. 10

    Hu, C-R. Midgap surface states as a novel signature for d x a 2 − x b 2 -wave superconductivity. Phys. Rev. Lett. 72, 1526–1529 (1993).

    ADS  Article  Google Scholar 

  11. 11

    Tanaka, Y. & Kashiwaya, S. Theory of tunneling spectroscopy of d-wave superconductors. Phys. Rev. Lett. 74, 3451–3454 (1994).

    ADS  Article  Google Scholar 

  12. 12

    Löfwander, T., Shumeiko, V. S. & Wendin, G. Andreev bound states in high-Tc superconducting junctions. Supercond. Sci. Technol. 14, R53–R77 (2001).

    ADS  Article  Google Scholar 

  13. 13

    Tanaka, Y. & Kashiwaya, S. Theory of the Josephson effect in d-wave superconductors. Phys. Rev. B 53, R11957–R11960 (1996).

    ADS  Article  Google Scholar 

  14. 14

    Barash, Yu. S., Burkhardt, H. & Rainer, D. Low-temperature anomaly in the Josephson critical current of junctions in d-wave superconductors. Phys. Rev. Lett. 77, 4070–4073 (1996).

    ADS  Article  Google Scholar 

  15. 15

    Tanaka, Y. & Kashiwaya, S. Theory of Josephson effects in anisotropic superconductors. Phys. Rev. B 56, 892–912 (1997).

    ADS  Article  Google Scholar 

  16. 16

    Baetzold, R. C. Atomistic simulation of ionic and electronic defects in YBa2Cu3O7 . Phys. Rev. B 38, 11304–11312 (1988).

    ADS  Article  Google Scholar 

  17. 17

    Zhang, X. & Catlow, C. R. A. Molecular dynamics study of oxygen diffusion in YBa2Cu3O6.91 . Phys. Rev. B 46, 457–462 (1992).

    ADS  Article  Google Scholar 

  18. 18

    Liu, P. & Wang, Y. Theoretical study on the structure of Cu(110)-p2×1–O reconstruction. J. Phys. Condens. Matter 12, 3955–3966 (2000).

    ADS  Article  Google Scholar 

  19. 19

    Phillpot, S. R. & Rickman, J. M. Simulated quenching to the zero-temperature limit of the grand-canonical ensemble. J. Chem. Phys. 97, 2651–2659 (1992).

    ADS  Article  Google Scholar 

  20. 20

    Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    ADS  Article  Google Scholar 

  21. 21

    Harrison, W. A. Electronic Structure and the Properties of Solids (Dover Publications, 1989).

    Google Scholar 

  22. 22

    Chmaissem, O., Eckstein, Y. & Kuper, C. G. The structure and a bond-valence-sum study of the 1-2-3 superconductors (CaxLa1−x)(Ba1.75−xLa0.25+x)Cu3Oy and YBa2Cu3Oy . Phys. Rev. B 63, 174510 (2001).

    ADS  Article  Google Scholar 

  23. 23

    Brown, I. D. A determination of the oxidation states and internal stress in Ba2YCu3Oxx=6−7 using bond valences. J. Solid State Chem. 82, 122–131 (1989).

    ADS  Article  Google Scholar 

  24. 24

    Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B 37, 3759–3761 (1988).

    ADS  Article  Google Scholar 

  25. 25

    Andersen, B. M., Bobkova, I., Barash, Yu. S. & Hirschfeld, P. J. 0–π transitions in Josephson junctions with antiferromagnetic interlayers. Phys. Rev. Lett. 96, 117005–117008 (2006).

    ADS  Article  Google Scholar 

  26. 26

    Freericks, J. K. Transport in Multilayered Nanostructures. The Dynamical Mean-Field Theory Approach (Imperial College Press, 2006).

    Book  Google Scholar 

  27. 27

    Andersen, B. M., Barash, Yu. S., Graser, S. & Hirschfeld, P. J. Josephson effects in d-wave superconductor junctions with antiferromagnetic interlayers. Phys. Rev. B 77, 054501 (2008).

    ADS  Article  Google Scholar 

  28. 28

    Lee, S. et al. Weak-link behavior of grain boundaries in superconducting Ba(Fe1−xCox)2As2 bicrystals. Appl. Phys. Lett. 95, 212505 (2009).

    ADS  Article  Google Scholar 

  29. 29

    Hammerl, G. et al. Possible solution of the grain-boundary problem for applications of high-Tc superconductors. Appl. Phys. Lett. 81, 3209–3211 (2002).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by DOE grant DE-FG02-05ER46236 (P.J.H.), and by the DFG through SFB 484 and TRR 80 (S.G., T.K., R.G. and J.M.) and a research scholarship (S.G.). We are grateful to Yu. S. Barash for important early contributions to the project and we acknowledge fruitful discussions with A. Gurevich and F. Loder. P.J.H. would also like to thank the Kavli Institute for Theoretical Physics for support under NSF-PHY05-51164 during the writing of this manuscript. The authors acknowledge the University of Florida High-Performance Computing Center for providing computational resources and support that have contributed to the research results reported in this article.

Author information

Affiliations

Authors

Contributions

R.G. applied the Slater–Koster technique to derive an effective tight-binding model Hamiltonian at the grain boundary and B.M.A. contributed in setting up the Bogoliubov–de Gennes equations for the calculation of the critical current. S.G. carried out the numerical calculations under the supervision of P.J.H. and T.K. J.M. contributed with his experience and knowledge about grain boundaries and the physical length scales involved. All authors contributed to the analysis of the results. P.J.H., T.K., J.M. and S.G. wrote the manuscript.

Corresponding author

Correspondence to S. Graser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 862 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Graser, S., Hirschfeld, P., Kopp, T. et al. How grain boundaries limit supercurrents in high-temperature superconductors. Nature Phys 6, 609–614 (2010). https://doi.org/10.1038/nphys1687

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing