Isolated optical vortex knots

Article metrics


Natural and artificially created light fields in three-dimensional space contain lines of zero intensity, known as optical vortices1,2,3. Here, we describe a scheme to create optical beams with isolated optical vortex loops in the forms of knots and links using algebraic topology. The required complex fields with fibred knots and links4 are constructed from abstract functions with braided zeros and the knot function is then embedded in a propagating light beam. We apply a numerical optimization algorithm to increase the contrast in light intensity, enabling us to observe several optical vortex knots. These knotted nodal lines, as singularities of the wave’s phase, determine the topology of the wave field in space, and should have analogues in other three-dimensional wave systems such as superfluids5 and Bose–Einstein condensates6,7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Theoretical construction of knotted complex wave fields from braids.
Figure 2: Numerical optimization of a Gaussian beam trefoil knot.
Figure 3: Plots of experimental nodal knots and links.


  1. 1

    Nye, J. F. Natural Focusing and Fine Structure of Light (IoPP, 1999).

  2. 2

    Dennis, M. R., O’Holleran, K. & Padgett, M. J. Singular optics: Optical vortices and polarization singularities. Prog. Opt. 53, 293–363 (2009).

  3. 3

    Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. A 336, 165–190 (1974).

  4. 4

    Rolfsen, D. Knots and Links (AMS, 2003).

  5. 5

    Poole, D. R., Scoffield, H., Barenghi, C. F. & Samuels, D. C. Geometry and topology of superfluid turbulence. J. Low Temp. Phys. 132, 97–117 (2003).

  6. 6

    Matthews, M. R. et al. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999).

  7. 7

    Ruostekoski, J. & Dutton, Z. Engineering vortex rings and systems for controlled studies of vortex interactions in Bose–Einstein condensates. Phys. Rev. A 72, 063626 (2005).

  8. 8

    Winfree, A. T., Winfree, E. M. & Seifert, H. Organizing centers in a cellular excitable medium. Physica D 17, 109–115 (1985).

  9. 9

    Moffatt, H. K. Degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117–129 (1969).

  10. 10

    Thompson, W. (Lord Kelvin) On vortex atoms. Phil. Mag. 34, 15–24 (1867).

  11. 11

    Faddeev, L. & Niemi, A. J. Stable knot-like structures in classical field theory. Nature 387, 58–61 (1997).

  12. 12

    Battye, R. A. & Sutcliffe, P. M. Knots as stable soliton solutions in a three-dimensional classical field theory. Phys. Rev. Lett. 81, 4798–4801 (1998).

  13. 13

    Irvine, W. T. M. & Bouwmeester, D. Linked and knotted beams of light. Nature Phys. 4, 716–720 (2008).

  14. 14

    O’Holleran, K., Dennis, M. R. & Padgett, M. J. Topology of light’s darkness. Phys. Rev. Lett. 102, 143902 (2009).

  15. 15

    Winfree, A. T. Persistent tangled vortex rings in generic excitable media. Nature 371, 233–236 (1994).

  16. 16

    Berry, M. V. & Dennis, M. R. Knotted and linked phase singularities in monochromatic waves. Proc. R. Soc. A 457, 2251–2263 (2001).

  17. 17

    Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Knotted threads of darkness. Nature 432, 165 (2004).

  18. 18

    Milnor, J. Singular Points of Complex Hypersurfaces (Princeton Univ. Press, 1969).

  19. 19

    Perron, B. Le noeud huit est algebrique réel. Inv. Math. 65, 441–451 (1982).

  20. 20

    Rudolph, L. Isolated critical points of mappings from R4 to R2 and a natural splitting of the Milnor number of a classical fibered link. Part I: Basic theory; examples. Comment. Math. Helv. 62, 630–645 (1987).

  21. 21

    Berry, M. V. & Dennis, M. R. Topological events on wave dislocation lines: Birth and death of small loops, and reconnection. J. Phys. A 40, 65–74 (2007).

  22. 22

    Siegman, A. E. Lasers (Univ. Science Books, 1986).

  23. 23

    Freund, I. Saddle point wave fields. Opt. Commun. 163, 230–242 (1999).

  24. 24

    Leach, J., Dennis, M. R., Courtial, J. & Padgett, M. J. Vortex knots in light. New J. Phys. 7, 55 (2005).

  25. 25

    Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003).

  26. 26

    Whyte, G. & Courtial, J. Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg–Saxton algorithm. New J. Phys. 7, 117 (2005).

  27. 27

    Ewing, B. & Millett, K. C. in The Mathematical Heritage of C F Gauss (ed. Rassias, G. M.) 225–266 (World Scientific, 1991).

  28. 28

    O’Holleran, K., Dennis, M. R., Flossmann, F. & Padgett, M. J. Fractality of light’s darkness. Phys. Rev. Lett. 100, 053902 (2008).

  29. 29

    O’Holleran, K., Flossmann, F., Dennis, M. R. & Padgett, M. J. Methodology for imaging the 3D structure of singularities in scalar and vector optical fields. J. Opt. A: Pure Appl. Opt. 11, 094020 (2009).

  30. 30

    Westphal, V. & Hell, S. W. Nanoscale resolution in the focal plane of an optical microscope. Phys. Rev. Lett. 94, 143903 (2005).

Download references


This work was supported by the Leverhulme Trust. M.R.D. is a Royal Society University Research Fellow.

Author information

M.R.D. and R.P.K. developed the knot construction on the basis of an idea of M.R.D. M.J.P. and K.O. developed the optimization algorithms and designed the experiment. B.J. and K.O. carried out the experiment. R.P.K. was responsible for the representation of results. M.R.D. prepared the manuscript with support from M.J.P.

Correspondence to Mark R. Dennis or Miles J. Padgett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 214 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 2667 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 2559 kb)

Supplementary Movie

Supplementary Movie 3 (MOV 473 kb)

Supplementary Movie

Supplementary Movie 4 (MOV 492 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dennis, M., King, R., Jack, B. et al. Isolated optical vortex knots. Nature Phys 6, 118–121 (2010) doi:10.1038/nphys1504

Download citation

Further reading