Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Near-field cavity optomechanics with nanomechanical oscillators


Cavity-enhanced radiation-pressure coupling between optical and mechanical degrees of freedom allows quantum-limited position measurements and gives rise to dynamical backaction, enabling amplification and cooling of mechanical motion. Here, we demonstrate purely dispersive coupling of high-Q nanomechanical oscillators to an ultrahigh-finesse optical microresonator via its evanescent field, extending cavity optomechanics to nanomechanical oscillators. Dynamical backaction mediated by the optical dipole force is observed, leading to laser-like coherent nanomechanical oscillations solely due to radiation pressure. Moreover, sub-fm Hz−1/2 displacement sensitivity is achieved, with a measurement imprecision equal to the standard quantum limit (SQL), which coincides with the nanomechanical oscillator’s zero-point fluctuations. The achievement of an imprecision at the SQL and radiation-pressure dynamical backaction for nanomechanical oscillators may have implications not only for detecting quantum phenomena in mechanical systems, but also for a variety of other precision experiments. Owing to the flexibility of the near-field coupling platform, it can be readily extended to a diverse set of nanomechanical oscillators. In addition, the approach provides a route to experiments where radiation-pressure quantum backaction dominates at room temperature, enabling ponderomotive squeezing or quantum non-demolition measurements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Evanescent coupling of nanomechanical oscillators to an optical microresonator.
Figure 2: Characterization of the optomechanical coupling.
Figure 3: Displacement measurement of a nanomechanical oscillator with an imprecision at the SQL.
Figure 4: Observation of radiation-pressure-induced dynamical backaction and coherent oscillations of a nanomechanical oscillator.


  1. 1

    Craighead, H. G. Nanoelectromechanical systems. Science 290, 1532–2537 (2000).

    ADS  Article  Google Scholar 

  2. 2

    Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    ADS  Article  Google Scholar 

  3. 3

    Jensen, K., Kwanpyo, K. & Zettl, A. An atomic-resolution nanomechanical mass sensor. Nature Nanotech. 3, 533–537 (2008).

    ADS  Article  Google Scholar 

  4. 4

    Cleland, A. & Roukes, M. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    ADS  Article  Google Scholar 

  5. 5

    Rugar, D., Budakian, R., Mamin, H. & Chui, B. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

    ADS  Article  Google Scholar 

  6. 6

    Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  7. 7

    Tittonen, I. et al. Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits. Phys. Rev. A 59, 1038–1044 (1999).

    ADS  Article  Google Scholar 

  8. 8

    Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    ADS  Article  Google Scholar 

  9. 9

    Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement and amplification. Preprint at <> (2008).

  10. 10

    LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    ADS  Article  Google Scholar 

  11. 11

    Flowers-Jacobs, N. E., Schmidt, D. R. & Lehnert, K. W. Intrinsic noise properties of atomic point contact displacement detectors. Phys. Rev. Lett. 98, 096804 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    ADS  Article  Google Scholar 

  13. 13

    Schliesser, A., Anetsberger, G., Riviere, R., Arcizet, O. & Kippenberg, T. J. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys. 10, 095015 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Unterreithmeier, Q. P., Weig, E. M. & Kotthaus, J. P. Universal transduction scheme for nanomechanical systems based on dielectric forces. Nature 458, 1001–1004 (2009).

    ADS  Article  Google Scholar 

  16. 16

    Braginsky, V. & Manukin, A. Measurement of Weak Forces in Physics Experiments (Univ. Chicago Press, 1977).

    Google Scholar 

  17. 17

    Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

    ADS  Article  Google Scholar 

  18. 18

    Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidman, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    ADS  Article  Google Scholar 

  21. 21

    Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    ADS  Article  Google Scholar 

  22. 22

    Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  23. 23

    Etaki, S. et al. Motion detection of a micromechanical resonator embedded in a d.c. SQUID. Nature Phys. 4, 785–788 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Poggio, M. et al. An off-board quantum point contact as a sensitive detector of cantilever motion. Nature Phys. 4, 635–638 (2008).

    Article  Google Scholar 

  25. 25

    Eichenfield, M., Camacho, R., Chan, J., Vahala, K. & Painter, O. A picogram- and nanometre scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).

    ADS  Article  Google Scholar 

  26. 26

    Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    ADS  Article  Google Scholar 

  27. 27

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    ADS  Article  Google Scholar 

  29. 29

    Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    ADS  Article  Google Scholar 

  30. 30

    Verbridge, S. S., Craighead, H. G. & Parpia, J. M. A megahertz nanomechanical resonator with room temperature quality factor over a million. Appl. Phys. Lett. 92, 013112 (2008).

    ADS  Article  Google Scholar 

  31. 31

    Fabre, C. et al. Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337–1343 (1994).

    ADS  Article  Google Scholar 

  32. 32

    Heidmann, A., Hadjar, Y. & Pinard, M. Quantum nondemolition measurement by optomechanical coupling. Appl. Phys. B: Laser Optics 64, 173–180 (1997).

    ADS  Article  Google Scholar 

  33. 33

    Verlot, P., Tavernarakis, A., Briant, T., Cohadon, P.-F. & Heidmann, A. Scheme to probe optomechanical correlations between two optical beams down to the quantum level. Phys. Rev. Lett. 102, 103601 (2009).

    ADS  Article  Google Scholar 

  34. 34

    Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007).

    ADS  Article  Google Scholar 

  35. 35

    Favero, I. & Karrai, K. Cavity cooling of a nanomechanical resonator by light scattering. New J. Phys. 10, 095006 (2008).

    ADS  Article  Google Scholar 

  36. 36

    Zalalutdinov, M. et al. Autoparametric optical drive for micromechanical oscillators. Appl. Phys. Lett. 79, 695–697 (2001).

    ADS  Article  Google Scholar 

  37. 37

    Höhberger Metzger, C. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

    ADS  Article  Google Scholar 

  38. 38

    Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O. & Kippenberg, T. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  Google Scholar 

  39. 39

    Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B 21, 697–705 (2004).

    ADS  Article  Google Scholar 

  40. 40

    Arcizet, O., Rivière, R., Schliesser, A., Anetsberger, G. & Kippenberg, T. J. Cryogenic properties of optomechanical silica microcavities. Phys. Rev. A 80, 021803 (2009).

    ADS  Article  Google Scholar 

  41. 41

    Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    ADS  Article  Google Scholar 

  42. 42

    Hossein-Zadeh, M., Rokhsari, H., Hajimiri, A. & Vahala, K. J. Characterization of a radiation-pressure-driven micromechanical oscillator. Phys. Rev. A 74, 023813 (2006).

    ADS  Article  Google Scholar 

  43. 43

    Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).

    ADS  Article  Google Scholar 

  44. 44

    Castellanos-Beltran, M., Irwin, K., Hilton, G., Vale, L. & Lehnert, K. Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nature Phys. 4, 929–931 (2008).

    ADS  Article  Google Scholar 

  45. 45

    Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    ADS  Article  Google Scholar 

  46. 46

    Miao, H., Danilishin, S., Corbitt, T. & Chen, Y. Standard quantum limit for probing mechanical energy quantization. Phys. Rev. Lett. 103, 100402 (2009).

    ADS  Article  Google Scholar 

  47. 47

    Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006).

    ADS  Article  Google Scholar 

  48. 48

    Hammerer, K., Aspelmeyer, M., Polzik, E. S. & Zoller, P. Establishing Einstein–Poldosky–Rosen channels between nanomechanics and atomic ensembles. Phys. Rev. Lett. 102, 020501 (2009).

    ADS  Article  Google Scholar 

  49. 49

    Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302 (2009).

    ADS  Article  Google Scholar 

  50. 50

    Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with precision beyond the standard quantum limit. Preprint at <> (2009).

Download references


T.J.K. acknowledges financial support by an Independent Max Planck Junior Research Group of the Max Planck Society, an ERC Starting Grant (SiMP), MINOS and a Marie Curie Excellence Grant as well as the Nanosystems Initiative Munich (NIM). J.P.K. acknowledges financial support by the Deutsche Forschungsgemeinschaft through project Ko 416/18, the German Excellence Initiative through the Nanosystems Initiative Munich (NIM) and LMUexcellent as well as LMUinnovativ. O.A. acknowledges financial support from a Marie Curie Intra European Fellowship within FP7 (project QUOM). T.J.K. thanks P. Gruss and the MPQ for continued Max-Planck support. The authors thank M.L. Gorodetsky for valuable discussions.

Author information




J.P.K. initiated the study and jointly devised the concept with T.J.K. G.A. and O.A. planned, carried out and analysed the experiments supervised by T.J.K. Q.P.U. and E.M.W. designed and developed suitable nanomechanical resonators. All authors discussed the results and contributed to the manuscript. R.R. contributed to the development of the experimental apparatus and A.S. assisted with the response measurements.

Corresponding author

Correspondence to T. J. Kippenberg.

Supplementary information

Supplementary Information

Supplementary Information (PDF 516 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anetsberger, G., Arcizet, O., Unterreithmeier, Q. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys 5, 909–914 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing