Quantum computation and quantum-state engineering driven by dissipation

Abstract

The strongest adversary in quantum information science is decoherence, which arises owing to the coupling of a system with its environment1. The induced dissipation tends to destroy and wash out the interesting quantum effects that give rise to the power of quantum computation2, cryptography2 and simulation3. Whereas such a statement is true for many forms of dissipation, we show here that dissipation can also have exactly the opposite effect: it can be a fully fledged resource for universal quantum computation without any coherent dynamics needed to complement it. The coupling to the environment drives the system to a steady state where the outcome of the computation is encoded. In a similar vein, we show that dissipation can be used to engineer a large variety of strongly correlated states in steady state, including all stabilizer codes, matrix product states4, and their generalization to higher dimensions5.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of the set-up.

References

  1. 1

    Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quant. Inf. Comput. 6, 97–165 (2006).

  2. 2

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  3. 3

    Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

  4. 4

    Fannes, M., Nachtergaele, B. & Werner, R. F. Finitely correlated states on quantum spin chains. Commun. Math. Phys. 144, 443–490 (1992).

  5. 5

    Verstraete, F. & Cirac, J. I. Renormalization algorithms for quantum-many body systems in two and higher dimensions. Preprint at <http://arxiv.org/abs/cond-mat/0407066> (2004).

  6. 6

    DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

  7. 7

    Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum Reservoir Engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996).

  8. 8

    Perez-Garcia, D., Verstraete, F., Wolf, M. M. & Cirac, J. I. Matrix product state representations. Quant. Inf. Comput. 7, 401–430 (2007).

  9. 9

    Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).

  10. 10

    Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting qubits. Phys. Rev. Lett. 86, 910–913 (2001).

  11. 11

    Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

  12. 12

    Levin, M. A. & Wen, X. G. String-net condensation: A physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).

  13. 13

    Cirac, J. I. & Zoller, P. New frontiers in quantum information with atoms and ions. Phys. Today 57, 38–44 (2004).

  14. 14

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

  15. 15

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

  16. 16

    Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976).

  17. 17

    Kempe, J., Kitaev, A. Y. & Regev, O. The complexity of the local Hamiltonian problem. SIAM J. Comput. 35, 1070–1097 (2004).

  18. 18

    Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37, 166–194 (2007).

  19. 19

    Kempe, J. Quantum random walks—an introductory overview. Contemp. Phys. 44, 307–327 (2003).

  20. 20

    Arora, S. & Safra, S. Probabilistic checking of proofs: A new characterization of NP. J. ACM 45, 70–122 (1998).

  21. 21

    Gottesman, D. A theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

  22. 22

    Wolf, M. M. & Cirac, J. I. Dividing quantum channels. Commun. Math. Phys. 279, 147–168 (2008).

  23. 23

    Wolf, M. M., Ortiz, G., Verstraete, F. & Cirac, J. I. Quantum phase transitions in matrix product systems. Phys. Rev. Lett. 97, 110403 (2006).

  24. 24

    Verstraete, F., Wolf, M. M., Perez-Garcia, D. & Cirac, J. I. Criticality, the area law, and the computational power of PEPS. Phys. Rev. Lett. 96, 220601 (2006).

  25. 25

    Verstraete, F., Cirac, J. I., Latorre, J. I., Rico, E. & Wolf, M. M. Renormalization-group transformations on quantum states. Phys. Rev. Lett. 94, 140601 (2005).

  26. 26

    Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nature Phys. 4, 878–883 (2008).

  27. 27

    Kraus, B. et al. Preparation of entangled states by quantum Markov processes. Phys. Rev. A 78, 042307 (2008).

  28. 28

    Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Atom-Photon Interactions (Wiley, 1992).

  29. 29

    Perez-Garcia, D., Verstraete, F., Cirac, J. I. & Wolf, M. M. PEPS as unique ground states of local Hamiltonians. Quant. Inf. Comput. 8, 0650–0663 (2008).

Download references

Acknowledgements

We thank D. Perez-Garcia for discussions and acknowledge financial support by the EU projects QUEVADIS, SCALA, the FWF, QUANTOP, FNU, SFB FoQuS, the DFG, Forschungsgruppe 635, the Munich Center for Advanced Photonics (MAP) and Caixa Manresa.

Author information

All authors have contributed equally to this paper.

Correspondence to Frank Verstraete or J. Ignacio Cirac.

Supplementary information

Supplementary Information

Supplementary Information (PDF 173 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verstraete, F., Wolf, M. & Ignacio Cirac, J. Quantum computation and quantum-state engineering driven by dissipation. Nature Phys 5, 633–636 (2009). https://doi.org/10.1038/nphys1342

Download citation

Further reading