Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit


The theory of quantum measurement of mechanical motion, describing the mutual coupling of a meter and a measured object, predicts a variety of phenomena such as quantum backaction, quantum correlations and non-classical states of motion. In spite of great experimental efforts, mostly based on nano-electromechanical systems, probing these in a laboratory setting has as yet eluded researchers. Cavity optomechanical systems, in which a high-quality optical resonator is parametrically coupled to a mechanical oscillator, hold great promise as a route towards the observation of such effects with macroscopic oscillators. Here, we present measurements on optomechanical systems exhibiting radiofrequency (62–122 MHz) mechanical modes, cooled to very low occupancy using a combination of cryogenic precooling and resolved-sideband laser cooling. The lowest achieved occupancy is n63. Optical measurements of these ultracold oscillators’ motion are shown to perform in a near-ideal manner, exhibiting an imprecision–backaction product about one order of magnitude lower than the results obtained with nano-electromechanical transducers.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Cryogenic cooling and displacement measurements of a micromechanical oscillator.
Figure 2: Thermalization and probing of a micromechanical oscillator.
Figure 3: Cryogenic precooling and resolved-sideband laser cooling.
Figure 4: Resolved-sideband laser cooling and heating by absorption.


  1. 1

    Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ. Press, 1992).

    Book  Google Scholar 

  2. 2

    Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  3. 3

    Bose, S., Jacobs, K. & Knight, P. L. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204–3210 (1999).

    ADS  Article  Google Scholar 

  4. 4

    Tittonen, I. et al. Interferometric measurements of the position of a macroscopic body: Towards observations of quantum limits. Phys. Rev. A 59, 1038–1044 (1999).

    ADS  Article  Google Scholar 

  5. 5

    Marshall, W., Simon, Ch., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Cleland, A. & Roukes, M. A nanometre-scale mechanical electrometer. Nature 392, 160–162 (1998).

    ADS  Article  Google Scholar 

  7. 7

    Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single-electron transistor. Nature 424, 291–293 (2003).

    ADS  Article  Google Scholar 

  8. 8

    LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).

    ADS  Article  Google Scholar 

  10. 10

    Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nature Phys. 4, 555–560 (2008).

    Article  Google Scholar 

  11. 11

    Teufel, J. D., Harlow, J. D., Regal, C. A. & Lehnert, K. W. Dynamical backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett. 101, 197203 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Etaki, S. et al. Motion detection of a micromechanical resonator embedded in a d.c. SQUID. Nature Phys. 4, 785–788 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172–1176 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    ADS  Article  Google Scholar 

  15. 15

    Schliesser, A. et al. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators. New J. Phys. 10, 095015 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Dykman, M. I. Heating and cooling of local and quasilocal vibrations by a nonresonance field. Sov. Phys. Solid State 20, 1306–1311 (1978).

    Google Scholar 

  17. 17

    Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

    ADS  Article  Google Scholar 

  18. 18

    Arcizet, O. et al. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    ADS  Article  Google Scholar 

  19. 19

    Schliesser, A. et al. Radiation pressure cooling of a micromechanical oscillator using dynamical backaction. Phys. Rev. Lett. 97, 243905 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Schliesser, A. et al. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement and amplification. Preprint at <> (2008).

  22. 22

    Flowers-Jacobs, N. E., Schmidt, D. R. & Lehnert, K. W. Intrinsic noise properties of atomic point contact displacement detectors. Phys. Rev. Lett. 98, 096804 (2007).

    ADS  Article  Google Scholar 

  23. 23

    Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    ADS  Article  Google Scholar 

  24. 24

    Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. J. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity. Phys. Rev. Lett. 95, 033901 (2005).

    ADS  Article  Google Scholar 

  25. 25

    Pinard, M., Hadjar, Y. & Heimann, A. Effective mass in quantum effects of radiation pressure. Eur. Phys. J. D 7, 107–116 (1999).

    ADS  Google Scholar 

  26. 26

    Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O. & Kippenberg, T. J. Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  Google Scholar 

  27. 27

    Arcizet, O., Riviere, R., Schliesser, A. & Kippenberg, T. Cryogenic properties of optomechanical silica microcavities. Preprint at <> (2009).

  28. 28

    Pohl, R. O., Liu, X. & Thompson, E. Low-temperature thermal conductivity and acoustic attenuation in amorphous solids. Rev. Mod. Phys. 74, 991–1013 (2002).

    ADS  Article  Google Scholar 

  29. 29

    Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).

    ADS  Article  Google Scholar 

  30. 30

    Braginsky, V. B. & Vyatchanin, S. P. Low quantum noise tranquilizer for Fabry–Perot interferometer. Phys. Lett. A 293, 228–234 (2002).

    ADS  Article  Google Scholar 

  31. 31

    Wineland, D. J. & Itano, W. M. Laser cooling of atoms. Phys. Rev. A 20, 1521–1540 (1979).

    ADS  Article  Google Scholar 

  32. 32

    Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    ADS  Article  Google Scholar 

  33. 33

    Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    ADS  Article  Google Scholar 

  34. 34

    Braginsky, V. B. & Khalili, F. Ya. Quantum nondemolition measurements: The route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996).

    ADS  MathSciNet  Article  Google Scholar 

  35. 35

    Genes, C., Vitali, D., Tombesi, P., Gigan, S. & Aspelmeyer, M. Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008).

    ADS  Article  Google Scholar 

  36. 36

    Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

    ADS  Article  Google Scholar 

  37. 37

    Fabre, C. et al. Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A 49, 1337–1343 (1994).

    ADS  Article  Google Scholar 

  38. 38

    Mancini, S. & Tombesi, P. Quantum noise reduction by radiation pressure. Phys. Rev. A 49, 4055–4065 (1994).

    ADS  Article  Google Scholar 

  39. 39

    Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007).

    ADS  Article  Google Scholar 

  40. 40

    Clerk, A. A., Marquardt, F. & Jacobs, K. Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10, 095010 (2008).

    ADS  Article  Google Scholar 

  41. 41

    Heidmann, A., Hadjar, Y. & Pinard, M. Quantum nondemolition measurement by optomechanical coupling. Appl. Phys. B 64, 173–180 (1997).

    ADS  Article  Google Scholar 

Download references


This work was supported by an Independent Max Planck Junior Research Group of the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG-GSC), the FP7 Project MINOS and a Marie Curie Excellence Grant. O.A. acknowledges financial support from a Marie Curie Grant (project QUOM). T. Becker is gratefully acknowledged for support with the cryogenic experiments, and J. Kotthaus for sample fabrication. T.J.K. gratefully thanks P. Gruss and MPQ for continued Max-Planck support.

Author information



Corresponding author

Correspondence to T. J. Kippenberg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schliesser, A., Arcizet, O., Rivière, R. et al. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys 5, 509–514 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing