Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot

Abstract

The ability to coherently manipulate single electron and photon states is vital for quantum information processing. However, typical quantization and correlation energies restrict processing rates in real implementations owing to the time–energy uncertainty. Here we report optical initialization, manipulation and probing of a single CdSe/ZnSe semiconductor quantum dot on femtosecond timescales, the ultimate limit for clean quantum operations in such ‘artificial atoms’. Resonant pump–probe measurements on a donor-charged quantum dot reveal that the fundamental exciton absorption is switched off through instantaneous Coulomb renormalization. Optical gain builds up following ultrafast intraband relaxation, with a thermalization rate determined by the electron spin. Operating the system in a nonlinear regime, we demonstrate the ability to change the number of quanta in a femtosecond light pulse by exactly ±1. This deterministic single-photon amplifier is characterized by a flat gain spectrum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stationary characterization of the singly charged CdSe/ZnSe quantum dot.
Figure 2: Experimental differential transmission change ΔT/T at the fundamental trion resonance X as a function of pump–probe delay time and probe photon energy.
Figure 3: Spectrally resolved transmission change for different pump–probe time delays tD.
Figure 4: Qualitative sketch of the amplitudes of the differential transmission signals ΔT/T.
Figure 5: Photoluminescence intensity of the fundamental trion resonance X as a function of time.
Figure 6: Spectral transmission change ΔT/T measured at a delay time of tD=20 ps and for average powers of the probe beam Pprobe increasing beyond the linear regime.

Similar content being viewed by others

References

  1. Weisbuch, C. & Winter, B. Quantum Semiconductor Structures (Academic, 1991).

    Book  Google Scholar 

  2. Bimberg, D., Grundmann, M. & Ledentsov, N. N. Quantum Dot Heterostructures (Wiley, 1999).

    Google Scholar 

  3. Parak, W. J., Pellegrino, T. & Plank, C. Labeling of cells with quantum dots. Nanotechnology 16, R9–R25 (2005).

    Article  ADS  Google Scholar 

  4. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  5. Yuan, Z. et al. Electrically driven single photon source. Science 295, 102–105 (2002).

    Article  ADS  Google Scholar 

  6. Zrenner, A. et al. Coherent properties of a two-level system based on a quantum-dot photodiode. Nature 418, 612–614 (2002).

    Article  ADS  Google Scholar 

  7. Ramsay, A. J. et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).

    Article  ADS  Google Scholar 

  8. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  Google Scholar 

  9. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  Google Scholar 

  10. Feng, M., D’Amico, I., Zanardi, P. & Rossi, F. Spin-based quantum information processing with semiconductor quantum dots and cavity QED. Phys. Rev. A 67, 014306 (2003).

    Article  ADS  Google Scholar 

  11. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  ADS  Google Scholar 

  12. Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article  ADS  Google Scholar 

  13. Eschner, J., Raab, Ch., Schmidt-Kaler, F. & Blatt, R. Light interference from single atoms and their mirror images. Nature 413, 495–498 (2001).

    Article  ADS  Google Scholar 

  14. Kiraz, A. et al. Indistinguishable photons from a single molecule. Phys. Rev. Lett. 94, 233602 (2005).

    Article  Google Scholar 

  15. Dekel, E. et al. Multiexciton spectroscopy of a single self-assembled quantum dot. Phys. Rev. Lett. 80, 4991–4994 (1998).

    Article  ADS  Google Scholar 

  16. Mathies, R. A., Brito Cruz, C. H., Pollard, W. T. & Shank, C. V. Direct observation of the femtosecond excited-state cis–trans isomerization in bacteriorhodopsin. Science 240, 777–779 (1988).

    Article  ADS  Google Scholar 

  17. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    Article  ADS  Google Scholar 

  18. Kroner, M. et al. The nonlinear Fano effect. Nature 451, 311–314 (2008).

    Article  ADS  Google Scholar 

  19. Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nature Phys. 4, 60–66 (2008).

    Article  ADS  Google Scholar 

  20. Wesseli, M. et al. Nonlinear optical response of a single self-assembled InGaAs quantum dot: A femtojoule pump–probe experiment. Appl. Phys. Lett. 88, 203110 (2006).

    Article  ADS  Google Scholar 

  21. Guenther, T. et al. Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy. Phys. Rev. Lett. 89, 057401 (2002).

    Article  ADS  Google Scholar 

  22. Unold, T., Mueller, K., Lienau, C., Elsaesser, T. & Wieck, A. D. Optical Stark effect in a quantum dot: Ultrafast control of single exciton polarizations. Phys. Rev. Lett. 92, 157401 (2004).

    Article  ADS  Google Scholar 

  23. Patton, B., Langbein, W., Woggon, U., Maingault, L. & Mariette, H. Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots. Phys. Rev. B 73, 235354 (2006).

    Article  ADS  Google Scholar 

  24. Mahapatra, S., Brunner, K. & Bougerol, C. Self-assembly of CdSe/ZnSe(001) quantum dot structures mediated by a tellurium cap layer. Appl. Phys. Lett. 91, 153110 (2007).

    Article  ADS  Google Scholar 

  25. Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).

    Article  ADS  Google Scholar 

  26. Patton, B., Langbein, W. & Woggon, U. Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Phys. Rev. B 68, 125316 (2003).

    Article  ADS  Google Scholar 

  27. Efros, A. L. & Rosen, M. The electronic structure of semiconductor nanocrystals. Ann. Rev. Math. Sci. 30, 475–521 (2000).

    Article  ADS  Google Scholar 

  28. Akimov, I. A., Andrews, J. T. & Henneberger, F. Stimulated emission from the biexciton in a single self-assembled II–VI quantum dot. Phys. Rev. Lett. 96, 067401 (2006).

    Article  ADS  Google Scholar 

  29. Moutzouris, K., Adler, F., Sotier, F., Träutlein, D. & Leitenstorfer, A. Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source. Opt. Lett. 31, 1148–1150 (2006).

    Article  ADS  Google Scholar 

  30. Adler, F., Sell, A., Sotier, F., Huber, R. & Leitenstorfer, A. Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser. Opt. Lett. 32, 3504–3506 (2007).

    Article  ADS  Google Scholar 

  31. Brito Cruz, C. H., Gordon, J. P., Becker, P. C., Fork, R. L. & Shank, C. V. Dynamics of spectral hole burning. IEEE J. Quant. El. 24, 261–269 (1988).

    Article  ADS  Google Scholar 

  32. Joffre, M. et al. Coherent effects in pump–probe spectroscopy of excitons. Opt. Lett. 13, 276–278 (1988).

    Article  ADS  Google Scholar 

  33. Akimov, I. A., Flissinkowski, T., Hundt, A. & Henneberger, F. Spin processes related to trions in quantum dots. Phys. Status Solidi A 201, 412–420 (2004).

    Article  ADS  Google Scholar 

  34. Atatüre, M. et al. Quantum-dot spin-state preparation with near-unity fidelity. Science 312, 551–553 (2006).

    Article  ADS  Google Scholar 

  35. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  36. Kalevich, V. K. et al. Spin redistribution due to Pauli blocking in quantum dots. Phys. Rev. B 64, 045309 (2001).

    Article  ADS  Google Scholar 

  37. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  38. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  39. Le Thomas, N., Woggon, U., Schöps, O., Artemyev, M. V., Kazes, M. & Banin, U. Cavity QED with semiconductor nanocrystals. Nano Lett. 6, 557–561 (2006).

    Article  ADS  Google Scholar 

  40. Parigi, V., Zavatta, A., Kim, M. & Bellini, M. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007).

    Article  ADS  Google Scholar 

  41. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).

    Book  Google Scholar 

  42. Merlein, J. et al. Nanomechanical control of an optical antenna. Nature Phot. 2, 230–233 (2008).

    Article  Google Scholar 

  43. Kahl, M. et al. Colloidal quantum dots in all-dielectric high-Q pillar microcavities. Nano Lett. 7, 2897–2900 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Discussions with Guido Burkard and Tilmann Kuhn are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Leitenstorfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotier, F., Thomay, T., Hanke, T. et al. Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot. Nature Phys 5, 352–356 (2009). https://doi.org/10.1038/nphys1229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1229

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing