Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase-change materials for non-volatile photonic applications


Phase-change materials (PCMs) provide a unique combination of properties. On transformation from the amorphous to crystalline state, their optical properties change drastically. Short optical or electrical pulses can be utilized to switch between these states, making PCMs attractive for photonic applications. We review recent developments in PCMs and evaluate the potential for all-photonic memories. Towards this goal, the progress and existing challenges to realize waveguides with stepwise adjustable transmission are presented. Colour-rendering and nanopixel displays form another interesting application. Finally, nanophotonic applications based on plasmonic nanostructures are introduced. They provide reconfigurable, non-volatile functionality enabling manipulation and control of light. Requirements and perspectives to successfully implement PCMs in emerging areas of photonics are discussed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Optical properties of PCMs.
Figure 2: Map for numerous compounds with an average of three p electrons.
Figure 3: Conceptual phase-change photonic memory.
Figure 4: Thin-film displays.
Figure 5: PCMs for active nanophotonics.


  1. 1

    Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

    Google Scholar 

  2. 2

    Hecht, J. Is Keck's law coming to an end? IEEE Spectrum (2016).

    Google Scholar 

  3. 3

    Kimura, H. & Kai, J. Topics around phase-change behavior of some salt hydrates as latent-heat storage materials. Denki Kagaku 53, 550–555 (1985).

    Google Scholar 

  4. 4

    Feinleib, J., deNeufville, J., Moss, S. C. & Ovshinsky, S. R. Rapid reversible light-induced crystallization of amorphous semiconductors. Appl. Phys. Lett. 18, 254–257 (1971).

    ADS  Google Scholar 

  5. 5

    Yang, Z. & Ramanathan, S. Breakthroughs in photonics 2014: phase change materials for photonics. IEEE Photonics J. 7, 0700305 (2015).

    Google Scholar 

  6. 6

    Kats, M. A. et al. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012).

    ADS  Google Scholar 

  7. 7

    Kats, M. A. et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt. Lett. 38, 368–370 (2013).

    ADS  Google Scholar 

  8. 8

    Zhang, Z. et al. Evolution of metallicity in vanadium dioxide by creation of oxygen vacancies. Phys. Rev. Appl. 7, 034008 (2017).

    ADS  Google Scholar 

  9. 9

    Rudé, M. et al. Ultrafast and broadband tuning of resonant optical nanostructures using phase-change materials. Adv. Opt. Mater. 4, 1060–1066 (2016).

    Google Scholar 

  10. 10

    Li, Z. et al. Correlated perovskites as a new platform for super-broadband-tunable photonics. Adv. Mater. 28, 9117–9125 (2016).

    ADS  Google Scholar 

  11. 11

    Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    ADS  Google Scholar 

  12. 12

    Tominaga, J., Fuji, H., Sato, A., Nakano, T. & Atoda, N. The characteristics and the potential of super resolution near-field structure. Jpn. J. Appl. Phys. 39, 957–961 (2000).

    ADS  Google Scholar 

  13. 13

    Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F. & Bez, R. Electronic switching in phase-change memories. IEEE Trans. Electron Devices 51, 452–459 (2004).

    ADS  Google Scholar 

  14. 14

    Wong, H. S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).

    Google Scholar 

  15. 15

    Raoux, S., Jordan-Sweet, J. L. & Kellock, A. J. Crystallization properties of ultrathin phase change films. J. Appl. Phys. 103, 114310 (2008).

    ADS  Google Scholar 

  16. 16

    Kim, I. S. et al. High performance PRAM cell scalable to sub-20 nm technology with below 4F2 cell size, extendable to DRAM applications. In 2010 IEEE Symposium on VLSI Technology 203–204 (IEEE, 2010).

    Google Scholar 

  17. 17

    Loke, D. et al. Breaking the speed limits of phase-change memory. Science 336, 1566–1569 (2012).

    ADS  Google Scholar 

  18. 18

    Bruns, G. et al. Nanosecond switching in GeTe phase change memory cells. Appl. Phys. Lett. 95, 043108 (2009).

    ADS  Google Scholar 

  19. 19

    Lankhorst, M. H. R., Ketelaars, B. W. S. M. M. & Wolters, R. A. M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4, 347–352 (2005).

    ADS  Google Scholar 

  20. 20

    Wuttig, M. Phase-change materials: towards a universal memory? Nat. Mater. 4, 265–266 (2005).

    ADS  Google Scholar 

  21. 21

    Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008).

    ADS  Google Scholar 

  22. 22

    Waldecker, L. et al. Time-domain separation of optical properties from structural transitions in resonantly bonded materials. Nat. Mater. 14, 991–995 (2015).

    ADS  Google Scholar 

  23. 23

    Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nat. Photon. 5, 141–148 (2011).

    ADS  Google Scholar 

  24. 24

    Bagheri, M., Poot, M., Li, M., Pernice, W. P. H. & Tang, H. X. Dynamic manipulation of nanomechanical resonators in the high-amplitude regime and non-volatile mechanical memory operation. Nat. Nanotech. 6, 726–732 (2011).

    ADS  Google Scholar 

  25. 25

    Fiore, V., Dong, C., Kuzyk, M. C. & Wang, H. Optomechanical light storage in a silica microresonator. Phys. Rev. A 87, 023812 (2013).

    ADS  Google Scholar 

  26. 26

    Pernice, W. H. P. & Bhaskaran, H. Photonic non-volatile memories using phase change materials. Appl. Phys. Lett. 101, 171101 (2012).

    ADS  Google Scholar 

  27. 27

    Rios, C., Hosseini, P., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. On-chip photonic memory elements employing phase-change materials. Adv. Mater. 26, 1372–1377 (2014).

    Google Scholar 

  28. 28

    Rios, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    ADS  MathSciNet  Google Scholar 

  29. 29

    Siegrist, T. et al. Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202–208 (2011).

    ADS  Google Scholar 

  30. 30

    Stegmaier, M. et al. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths. Appl. Phys. Lett. 104, 091108 (2014).

    ADS  Google Scholar 

  31. 31

    Poznanovic, D. S. in Reconfigurable Computing: Architectures and Applications LNCS 3985 (eds Bertels, K., Cardoso, J. M. P. & Vassiliadis, S.) 243–254 (Springer, 2006).

    Google Scholar 

  32. 32

    Rudé, M. et al. Optical switching at 1.55 μm in silicon racetrack resonators using phase change materials. Appl. Phys. Lett. 103, 141119 (2013).

    ADS  Google Scholar 

  33. 33

    Ikuma, Y., Saiki, T. & Tsuda, H. Proposal of a small self-holding 2×2 optical switch using phase-change material. IEICE Electron. Express 5, 442–445 (2008).

    Google Scholar 

  34. 34

    Liang, H., Soref, R., Mu, J., Li, X. & Huang, W.-P. Electro-optical phase-change 2 × 2 switching using three- and four-waveguide directional couplers. Appl. Opt. 54, 5897–5902 (2015).

    ADS  Google Scholar 

  35. 35

    Wang, Q. et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photon. 10, 60–65 (2016).

    ADS  Google Scholar 

  36. 36

    Rudé, M., Simpson, R. E., Quidant, R., Pruneri, V. & Renger, J. Active control of surface plasmon waveguides with a phase change material. ACS Photon. 2, 669–674 (2015).

    Google Scholar 

  37. 37

    Liang, G. et al. Comparison of optical and electrical transient response during nanosecond laser pulse-induced phase transition of Ge2Sb2Te5 thin films. Chem. Phys. Lett. 507, 203–207 (2011).

    ADS  Google Scholar 

  38. 38

    Coombs, J. H., Jongenelis, A. P. J. M., van Es-Spiekman, W. & Jacobs, B. A. J. Laser-induced crystallization phenomena in GeTe-based alloys. I. Characterization of nucleation and growth. J. Appl. Phys. 78, 4906–4917 (1995).

    ADS  Google Scholar 

  39. 39

    Kalb, J. A., Wuttig, M. & Spaepen, F. Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording. J. Mater. Res. 22, 748–754 (2007).

    ADS  Google Scholar 

  40. 40

    Turnbull, D. Under what conditions can a glass be formed? Contemp. Phys. 10, 473–488 (1969).

    ADS  Google Scholar 

  41. 41

    Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2013).

    ADS  Google Scholar 

  42. 42

    Heavens, O. S. Optical Properties of Thin Solid Films (Dover Publications, 1991).

    Google Scholar 

  43. 43

    Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014).

    ADS  Google Scholar 

  44. 44

    Rios, C., Hosseini, P., Taylor, R. A. & Bhaskaran, H. Color depth modulation and resolution in phase-change material nanodisplays. Adv. Mater. 28, 4720–4726 (2016).

    Google Scholar 

  45. 45

    Schlich, F. F., Zalden, P., Lindenberg, A. M. & Spolenak, R. Color switching with enhanced optical contrast in ultrathin phase-change materials and semiconductors induced by femtosecond laser pulses. ACS Photon. 2, 178–182 (2015).

    Google Scholar 

  46. 46

    Hosseini, P. & Bhaskaran, H. Colour performance and stack optimisation in phase change material based nano-displays. Proc. SPIE 9520, 95200M (2015).

    ADS  Google Scholar 

  47. 47

    Krasavin, A. V. & Zheludev, N. I. Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

    ADS  Google Scholar 

  48. 48

    Sámson, Z. L. et al. Chalcogenide glasses in active plasmonics. Phys. Status Solidi Rapid Res. Lett. 4, 274–276 (2010).

    ADS  Google Scholar 

  49. 49

    Sámson, Z. L. et al. Metamaterial electro-optic switch of nanoscale thickness. Appl. Phys. Lett. 96, 143105 (2010).

    ADS  Google Scholar 

  50. 50

    Polking, M. J. et al. Controlling localized surface plasmon resonances in GeTe nanoparticles using an amorphous-to-crystalline phase transition. Phys. Rev. Lett. 111, 037401 (2013).

    ADS  Google Scholar 

  51. 51

    Kühler, P. et al. Imprinting the optical near field of microstructures with nanometer resolution. Small 5, 1825–1829 (2009).

    Google Scholar 

  52. 52

    Siegel, J. et al. Ultraviolet optical near-fields of microspheres imprinted in phase change films. Appl. Phys. Lett. 96, 193108 (2010).

    ADS  Google Scholar 

  53. 53

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).

    ADS  Google Scholar 

  54. 54

    Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    ADS  Google Scholar 

  55. 55

    Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009).

    ADS  Google Scholar 

  56. 56

    Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    ADS  Google Scholar 

  57. 57

    Gholipour, B., Zhang, J., Macdonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

    Google Scholar 

  58. 58

    Chen, Y. G. et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances. Opt. Express 21, 13691–13698 (2013).

    ADS  Google Scholar 

  59. 59

    Michel, A.-K. U. et al. Using low-loss phase-change materials for mid-infrared antenna resonance tuning. Nano Lett. 13, 3470–3475 (2013).

    ADS  Google Scholar 

  60. 60

    Krbal, M. et al. Amorphous InSb: longer bonds yet higher density. J. Appl. Phys. 108, 023506 (2010).

    ADS  Google Scholar 

  61. 61

    Michel, A.-K. U. et al. Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses. ACS Photon. 1, 833–839 (2014).

    Google Scholar 

  62. 62

    Cao, T., Wei, C.-W., Simpson, R. E., Zhang, L. & Cryan, M. J. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci. Rep. 4, 3955 (2014).

    Google Scholar 

  63. 63

    Dong, S., Zhang, K., Yu, Z. & Fan, J. A. Electrochemically programmable plasmonic antennas. ACS Nano 10, 6716–6724 (2016).

    Google Scholar 

  64. 64

    Abb, M., Albella, P., Aizpurua, J. & Muskens, O. L. All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett. 11, 2457–2463 (2011).

    ADS  Google Scholar 

  65. 65

    Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    ADS  Google Scholar 

  66. 66

    Jun, Y. C. et al. Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Opt. Express 20, 1903–1911 (2012).

    ADS  Google Scholar 

  67. 67

    Bez, R. & Pirovano, A. Non-volatile memory technologies: emerging concepts and new materials. Mater. Sci. Semicond. Process. 7, 349–355 (2004).

    Google Scholar 

  68. 68

    Burr, G. W. et al. Phase change memory technology. J. Vac. Sci. Technol. B 28, 223–262 (2010).

    Google Scholar 

  69. 69

    El-Hinnawy, N. et al. A four-terminal, inline, chalcogenide phase-change RF switch using an independent resistive heater for thermal actuation. IEEE Electron Dev. Lett. 34, 1313–1315 (2013)

    ADS  Google Scholar 

  70. 70

    El-Hinnawy, N. et al. Low-loss latching microwave switch using thermally pulsed non-volatile chalcogenide phase change materials. Appl. Phys. Lett. 105, 013501 (2014).

    ADS  Google Scholar 

  71. 71

    Cao, T., Simpson, R. E. & Cryan, M. J. Study of tunable negative index metamaterials based on phase-change materials. J. Opt. Soc. Am. B 30, 439–444 (2013).

    ADS  Google Scholar 

  72. 72

    Cao, T., Zhang, L., Simpson, R. E. & Cryan, M. J. Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial. J. Opt. Soc. Am. B 30, 1580–1585 (2013).

    ADS  Google Scholar 

  73. 73

    Cao, T., Wei, C., Simpson, R. E., Zhang, L. & Cryan, M. J. Rapid phase transition of a phase-change metamaterial perfect absorber. Opt. Mater. Express 3, 1101–1110 (2013).

    ADS  Google Scholar 

  74. 74

    Cao, T., Zhang, L., Simpson, R. E., Wei, C. & Cryan, M. J. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Opt. Express 21, 27841–27851 (2013).

    ADS  Google Scholar 

  75. 75

    Chen, Y. et al. Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep. 5, 8660 (2015).

    Google Scholar 

  76. 76

    Yin, X. et al. Active chiral plasmonics. Nano Lett. 15, 4255–4260 (2015).

    ADS  Google Scholar 

  77. 77

    Tittl, A. et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015).

    Google Scholar 

  78. 78

    Cao, T., Zheng, G., Wang, S. & Wei, C. Ultrafast beam steering using gradient Au-Ge2Sb2Te5-Au plasmonic resonators. Opt. Express 23, 18029–18039 (2015).

    ADS  Google Scholar 

  79. 79

    Cao, T., Wei, C. & Mao, L. Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism. Sci. Rep. 5, 14666 (2015).

    ADS  Google Scholar 

  80. 80

    Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotech. 11, 23–36 (2016).

    ADS  Google Scholar 

  81. 81

    Zheludev, N. I. Obtaining optical properties on demand. Science 348, 973–974 (2015).

    ADS  Google Scholar 

  82. 82

    Karvounis, A., Gholipour, B., Macdonald, K. F. & Zheludev, N. I. All-dielectric phase-change reconfigurable metasurface. Appl. Phys. Lett. 109, 051103 (2016).

    ADS  Google Scholar 

  83. 83

    Li, P. et al. Reversible optical switching of highly confined phonon–polaritons with an ultrathin phase-change material. Nat. Mater. 15, 870–875 (2016).

    ADS  Google Scholar 

  84. 84

    Staude, I. & Rockstuhl, C. Surface phonon–polaritons: to scatter or not to scatter. Nat. Mater. 15, 821–822 (2016).

    ADS  Google Scholar 

  85. 85

    Lencer, D. et al. A map for phase-change materials. Nat. Mater. 7, 972–977 (2008).

    ADS  Google Scholar 

  86. 86

    Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

    Google Scholar 

  87. 87

    Hoppe, R. Effective coordination numbers (ECoN) and mean Active fictive ionic radii (MEFIR). Z. Kristallogr. Cryst. Mater. 150, 23–52 (1979).

    Google Scholar 

  88. 88

    Raty, J. Y. et al. Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015).

    ADS  Google Scholar 

  89. 89

    Lucovsky, G. & White, R. M. Effects of resonance bonding on the properties of crystalline and amorphous semiconductors. Phys. Rev. B 8, 660–667 (1973).

    ADS  Google Scholar 

  90. 90

    Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279–283 (2012).

    ADS  Google Scholar 

  91. 91

    Salinga, M. et al. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat. Commun. 4, 2371 (2013).

    ADS  Google Scholar 

  92. 92

    Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

    ADS  Google Scholar 

  93. 93

    Maier, S. A. et al. Plasmonics — a route to nanoscale optical devices. Adv. Mater. 13, 1501–1505 (2001).

    Google Scholar 

  94. 94

    Smith, D., Pendry, J. B. & Wiltshire, M. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    ADS  Google Scholar 

  95. 95

    Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photon. 5, 523–530 (2011).

    ADS  Google Scholar 

  96. 96

    Shalaev, V. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    ADS  Google Scholar 

  97. 97

    Litchinitser, N. & Shalaev, V. Photonic metamaterials. Laser Phys. Lett. 5, 411–420 (2008).

    ADS  Google Scholar 

  98. 98

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  Google Scholar 

  99. 99

    Macdonald, K. F. & Zheludev, N. I. Active plasmonics: current status. Laser Photon. Rev. 4, 562–567 (2010).

    ADS  Google Scholar 

  100. 100

    Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Characterization of the tunable response of highly strained compliant optical metamaterials. Phil. Trans. R. Soc. A 369, 3447–3455 (2011).

    ADS  Google Scholar 

  101. 101

    Emani, N. K. et al. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 12, 5202–5206 (2012).

    ADS  Google Scholar 

  102. 102

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  Google Scholar 

  103. 103

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  Google Scholar 

  104. 104

    Goldflam, M. D. et al. Voltage switching of a VO2 memory metasurface using ionic gel. Appl. Phys. Lett. 105, 041117 (2014).

    ADS  Google Scholar 

Download references


M.W. acknowledges funding through SFB 917 (Nanoswitches) and an European Research Council Advanced Grant 340698 ('Disorder control') as well as help from J.-Y. Raty, F. Lange and S. Jakobs in preparing Figs 1,2,3. T.T. acknowledges funding through SFB 917 (Nanoswitches) and the German Federal Ministry of Education and Research (funding program Photonics Research Germany, contract no. 13N14151).

Author information



Corresponding author

Correspondence to M. Wuttig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nature Photon 11, 465–476 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing