3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination


Plasmonics has generated tremendous excitement because of its unique capability to focus light into subwavelength volumes1, beneficial for various applications such as light harvesting2,3, photodetection4, sensing5, catalysis6 and so on. Here we demonstrate a plasmon-enhanced solar desalination device, fabricated by the self–assembly of aluminium nanoparticles into a three-dimensional porous membrane. The formed porous plasmonic absorber can float naturally on water surface, efficiently absorb a broad solar spectrum (>96%) and focus the absorbed energy at the surface of the water to enable efficient (90%) and effective desalination (a decrease of four orders of magnitude). The durability of the devices has also been examined, indicating a stable performance over 25 cycles under various illumination conditions. The combination of the significant desalination effect, the abundance and low cost of the materials, and the scalable production processes suggest that this type of plasmon-enhanced solar desalination device could provide a portable desalination solution.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Fabrication process and characterization of the Al NP-based plasmonic structure.
Figure 2: Broadband absorption of the Al NP/AAM structure.
Figure 3: Set-up and performance of plasmon-enhanced solar desalination.
Figure 4: Desalination performance and the durability of the device.


  1. 1

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Aydin, K., Ferry, V. E., Briggs, R. M. & Atwater, H. A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Commun. 1, 1528 (2011).

    Google Scholar 

  4. 4

    Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014).

    ADS  Article  Google Scholar 

  5. 5

    Liu, N., Mesch, M., Weiss, T., Hentschel, M. & Giessen, H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10, 2342–2348 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles, Nature Mater. 14, 567–576 (2015).

    ADS  Article  Google Scholar 

  7. 7

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    ADS  Article  Google Scholar 

  8. 8

    Sharon, A. & Reddy, K. S. A review of solar energy driven desalination technologies. Renew. Sust. Energy Rev. 41, 1080–1118 (2015).

    Article  Google Scholar 

  9. 9

    Xiao, G. et al. A review on solar stills for brine desalination. Appl. Energy 103, 642–652 (2015).

    Article  Google Scholar 

  10. 10

    Kuzyk, A. et al. Reconfigurable 3D plasmonic metamolecules. Nature Mater. 13, 862–866 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Yang, S. et al. Feedback-driven self-assembly of symmetry breaking optical metamaterials in solution. Nature Nanotech. 9, 1002–1006 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Klinkova, A., Choueiri, R. M. & Kumacheva, E. Self-assembled plasmonic nanostructures . Chem. Soc. Rev. 43, 3976–3991 (2014).

    Article  Google Scholar 

  13. 13

    Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

    Article  Google Scholar 

  14. 14

    Liu, Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015).

    Article  Google Scholar 

  15. 15

    Langhammer, C., Schwind, M., Kasemo, B. & Zoric, L. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8, 1461–1471 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Knight, M. W. et al. Aluminum for plasmonics. ACS Nano 8, 834–840 (2014).

    Article  Google Scholar 

  17. 17

    Sanz, J. M. et al. UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects. J. Phys. Chem. C 117, 19606–19615 (2013).

    Article  Google Scholar 

  18. 18

    Chan, G. H., Zhao, J., Schatz, G. C. & Duyne, R. P. V. Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C, 112, 13958–13936 (2008).

    Article  Google Scholar 

  19. 19

    Lee, K., Tang, Y. & Ouyang, M. Self-ordered, controlled structure nanoporous membranes using constant current anodization. Nano Lett. 8, 4624–4629 (2008).

    ADS  Article  Google Scholar 

  20. 20

    Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    ADS  Article  Google Scholar 

  21. 21

    Chou, J. B. et al. Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals, Adv. Mater. 26, 8041–8045 (2014).

    Article  Google Scholar 

  22. 22

    Jeurgens, L. Sloof, W. Tichelaar, F. & Mittemeijer, E. Thermodynamic stability of amorphous oxide films on metals: application to aluminum oxide films on aluminum substrates, Phys. Rev. B 62, 4707−4719 (2000).

    ADS  Article  Google Scholar 

  23. 23

    Xi, J. Q. et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nature Photon. 1, 176–179 (2007).

    ADS  Article  Google Scholar 

  24. 24

    Li, K. R., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).

    ADS  Article  Google Scholar 

  25. 25

    Ghasemi, H. et al. Solar steam generation by heat localization. Nature Commun. 5, 4449 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Ito, Y. et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015).

    Article  Google Scholar 

  27. 27

    Boyer, T. P. et al. World Ocean Database 2013 (Silver Spring, accessed September 2013).

  28. 28

    Safe Drinking-Water from Desalination (WHO, 2011); http://who.int/water_sanitation_health/publications/2011/desalination_guidance/en/

  29. 29

    Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nature Nanotech. 10, 459–464 (2015).

    ADS  Article  Google Scholar 

  30. 30

    Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1985).

Download references


This work is jointly supported by the State Key Program for Basic Research of China (Grant no. 2015CB659300), National Natural Science Foundation of China (Grant nos 11321063, 11574143 and 11204139), Natural Science Foundation of Jiangsu Province (Grant nos BK20150056 and BK20151079) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), Qing Lan Project of Jiangsu Province and the Fundamental Research Funds for the Central Universities.

Author information




J.Z. designed research; L.Z., Y.T., J.W. and W.X. performed research; Y.Y. contributed new reagents/analytical tools; W.C., S.Z. and J.Z. analysed data; and L.Z., S.Z. and J.Z. wrote the paper.

Corresponding author

Correspondence to Jia Zhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1297 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Tan, Y., Wang, J. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photon 10, 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75

Download citation

Further reading