Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals

Abstract

The large mobilities and carrier lifetimes of hybrid perovskite single crystals and the high atomic numbers of Pb, I and Br make them ideal for X-ray and gamma-ray detection. Here, we report a sensitive X-ray detector made of methylammonium lead bromide perovskite single crystals. A record-high mobility–lifetime product of 1.2 × 10–2 cm2 V–1 and an extremely small surface charge recombination velocity of 64 cm s–1 are realized by reducing the bulk defects and passivating surface traps. Single-crystal devices with a thickness of 2–3 mm show 16.4% detection efficiency at near zero bias under irradiation with continuum X-ray energy up to 50 keV. The lowest detectable X-ray dose rate is 0.5 μGyair s–1 with a sensitivity of 80 μC Gy−1air cm–2, which is four times higher than the sensitivity achieved with α-Se X-ray detectors. This allows the radiation dose applied to a human body to be reduced for many medical and security check applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optoelectronic properties of MAPbBr3 single crystals.
Figure 2: UV–O3 passivation of the surface traps of MAPbBr3 single crystals.
Figure 3: Photodetection performance of the MAPbBr3 single-crystal devices.
Figure 4: X-ray detection performance of the MAPbBr3 single-crystal devices.

Similar content being viewed by others

References

  1. Kasap, S. et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011).

    Article  Google Scholar 

  2. Yaffe, M. J. & Rowlands, J. A. X-ray detectors for digital radiography. Phys. Med. Biol. 42, 1–39 (1997).

    Article  Google Scholar 

  3. Tegze, M. & Faigel, G. X-ray holography with atomic resolution. Nature 380, 49–51 (1996).

    Article  ADS  Google Scholar 

  4. Shah, K. S. et al. X-ray imaging with PbI2-based a-Si:H flat panel detectors. Nucl. Instrum. Methods Phys. Res. A 458, 140–147 (2001).

    Article  ADS  Google Scholar 

  5. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853 (2000).

    Article  ADS  Google Scholar 

  6. Brenner, D. J., Elliston, C. D., Hall, E. J. & Berdon, W. E. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am. J. Roentgenol. 176, 289–296 (2001).

    Article  Google Scholar 

  7. Eisen, Y. & Shor, A. CdTe and CdZnTe room-temperature X-ray and gamma ray detectors and imaging systems. IEEE Trans. Nucl. Sci. 487, 1191–1198 (2004).

    Article  ADS  Google Scholar 

  8. Szeles, C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi 241, 783–790 (2004).

    Article  Google Scholar 

  9. Kabir, M. Z. & Kasap, S. O. Charge collection and absorption-limited sensitivity of X-ray photoconductors: applications to a-Se and HgI2 . Appl. Phys. Lett. 80, 1664–1666 (2002).

    Article  ADS  Google Scholar 

  10. Luke, P. N., Rossington, C. S. & Wesela, M. F. Low energy X-ray response of Ge detectors with amorphous Ge entrance contacts. IEEE Trans. Nucl. Sci. 41, 1074–1079 (1994).

    Article  ADS  Google Scholar 

  11. Jeong, M., Jo, W. J., Kim, H. S. & Ha, J. H. Radiation hardness characteristics of Si-PIN radiation detectors. Nucl. Instrum. Methods Phys. Res. A 784, 119–123 (2015).

    Article  ADS  Google Scholar 

  12. Evans, R. D. & Noyau, A. The Atomic Nucleus Vol. 582 (McGraw-Hill, 1955).

    Google Scholar 

  13. Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nature Commun. 6, 7747 (2015).

    Article  ADS  Google Scholar 

  14. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  ADS  Google Scholar 

  15. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  ADS  Google Scholar 

  16. Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).

    Article  ADS  Google Scholar 

  17. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  ADS  Google Scholar 

  18. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  ADS  Google Scholar 

  19. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013).

    Article  ADS  Google Scholar 

  20. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nature Photon. 9, 444–449 (2015).

    Article  ADS  Google Scholar 

  21. Dong, Q. et al. Electron–hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  ADS  Google Scholar 

  22. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Commun. 6, 7586 (2015).

    Article  ADS  Google Scholar 

  23. Yang, Y. et al. Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nature Commun. 6, 7961 (2015).

    Article  ADS  Google Scholar 

  24. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  25. Castelli, I. E., Thygesen, K. S. & Jacobsen, K. W. Calculated optical absorption of different perovskite phases. J. Mater. Chem. A 3, 12343–12349 (2015).

    Article  Google Scholar 

  26. Androulakis, J. et al. Dimensional reduction: a design tool for new radiation detection materials. Adv. Mater. 23, 4163–4167 (2011).

    Article  Google Scholar 

  27. Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Article  Google Scholar 

  28. Bi, Y. et al. Charge carrier lifetimes exceeding 15 μs in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 7, 923–928 (2016).

    Article  Google Scholar 

  29. Fang, Y. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nature Photon. 9, 679–686 (2015).

    Article  ADS  Google Scholar 

  30. Hsieh, P. T., Chen, Y. C., Kao, K. S. & Wang, C. M. Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A 90, 317–321 (2008).

    Article  ADS  Google Scholar 

  31. Casalongue, H. S. et al. Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nature Commun. 4, 2817 (2013).

    Article  ADS  Google Scholar 

  32. Yin, W.-J. et al. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 1, 1500044 (2015).

    Article  Google Scholar 

  33. Schmidt, J. et al. Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3 . Prog. Photovoltaics 16, 461–466 (2008).

    Article  Google Scholar 

  34. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nature Mater. 14, 193–198 (2015).

    Article  ADS  Google Scholar 

  35. Guo, F. et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nature Nanotech. 7, 798–802 (2012).

    Article  ADS  Google Scholar 

  36. Wei, H. et al. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors. Adv. Mater. 27, 4975–4981 (2015).

    Article  Google Scholar 

  37. Berger, M. J. et al. XCOM: Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013).

  38. Dvoryankin, V. F. et al. X-ray sensitivity of Cd0.9Zn0.1Te detectors. Tech. Phys. 55, 306–308 (2010).

    Article  Google Scholar 

  39. Schieber, M. et al. Theoretical and experimental sensitivity to X-rays of single and polycrystalline HgI2 compared with different single-crystal detectors. Nucl. Instrum. Methods Phys. Res. A 458, 41–46 (2001).

    Article  ADS  Google Scholar 

  40. Shearer, D. R. & Bopaiah, M. Dose rate limitations of integrating survey meters for diagnostic X-ray surveys. Health Phys. 79, S20–S21 (2000).

    Article  Google Scholar 

  41. Clairand, I. et al. Use of active personal dosemeters in interventional radiology and cardiology: tests in laboratory conditions and recommendations—ORAMED project. Radiat. Meas. 46, 1252–1257 (2011).

    Article  Google Scholar 

  42. Devanathan, R., Corrales, L. R., Gao, F. & Weber, W. J. Signal variance in gamma-ray detectors—a review. Nucl. Instrum. Methods Phys. Res. A 565, 637–649 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The majority of this work was supported financially by the Defense Threat Reduction Agency (award no. HDTRA1-14-1-0030). M.A.L. acknowledges funding from the European Research Council (ERC starting grant ‘Hy-SPOD’ no. 306983). Y.G. acknowledges support from the National Science Foundation (grant no. CBET-1437656).

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived and supervised the project. H.W. synthesized materials, fabricated the device and measured the optoelectronic properties and photodetector performance. P.M., W.C. and L.C. measured the device properties under X-ray radiation. H.W., Y.F. and P.M. calculated the charge collection efficiency under X-ray radiation. H.H.F. and M.A.L. performed photoluminescence and photoluminescence lifetime measurements. C.W., B.E. and Y.G. carried out XPS measurement. All authors analysed the data. J.H. and H.W. wrote the manuscript, and all authors reviewed it.

Corresponding authors

Correspondence to Lei Cao or Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1218 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Fang, Y., Mulligan, P. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photon 10, 333–339 (2016). https://doi.org/10.1038/nphoton.2016.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing