Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent backscattering of Raman light

This article has been updated

Abstract

Coherent backscattering of light is observed when electromagnetic waves undergo multiple scattering within a disordered optical medium. So far, coherent backscattering of light has been studied extensively for elastic (or Rayleigh) light scattering. The occurrence of inelastic scattering affects the visibility of the backscattering effect by reducing the degree of optical coherence in the diffusion process. Here, we discuss the first experimental observation of a constructive interference effect in the inelastically backscattered Raman radiation from strongly diffusing silicon nanowire random media. The observed phenomenon originates from the coherent nature of the Raman scattering process, which typically occurs on a scale given by the phonon coherence length. We interpret our results in the context of a theoretical model of mixed Rayleigh–Raman random walks to shed light on the role of phase coherence in multiple scattering phenomena.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural characterization and ECBS cones for silicon nanowire materials.
Figure 2: Coherent backscattering cones for Rayleigh and Raman radiations.
Figure 3: Comparison between angular dependence of the Raman scattered light and that of the photoluminescence emission.
Figure 4: Coherent Raman backscattering process and illustration of basic concepts.
Figure 5: Enhancement of Raman coherent backscattering cones and comparison between experimental data and theoretical model.

Change history

  • 07 February 2017

    In the version of this Article originally published online, in Fig. 1 caption, in the sentence beginning 'It should be noted that...', '(ψ = θ)' should have read '(ψ =0)'. This error has now been corrected in all versions of the Article.

References

  1. 1

    Sheng, P . Introduction to Wave Scattering, Localization and Mesoscopic Phenomena 2nd edn (Springer, 2010).

    Google Scholar 

  2. 2

    John, S . Localization and absorption of waves in a weakly dissipative disordered medium. Phys. Rev. B 31, 304–309 (1985).

    ADS  Article  Google Scholar 

  3. 3

    Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    ADS  Article  Google Scholar 

  4. 4

    Segev, M., Silberberg, Y. & Christodoulides, D. M. Anderson localization of light. Nat. Photon. 7, 197–204 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 4, 359–367 (2008).

    Article  Google Scholar 

  6. 6

    Wiersma, D. S., Van Albada, M. P. & Lagendijk, A. Random laser? Nature 373, 203–204 (1995).

    ADS  Article  Google Scholar 

  7. 7

    Wiersma, D. S. Disordered photonics. Nat. Photon. 7, 188–196 (2013).

    ADS  Article  Google Scholar 

  8. 8

    Kuga, Y. & Ishimaru, A. Retroreflectance from a dense distribution of spherical particles. J. Opt. Soc. Am. A 8, 831–835 (1984).

    ADS  Article  Google Scholar 

  9. 9

    Van Albada, M. P. & Lagendijk, A . Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985).

    ADS  Article  Google Scholar 

  10. 10

    Wolf, P. E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985).

    ADS  Article  Google Scholar 

  11. 11

    Gantmakher, V. F. Electrons and Disorder in Solids (International Series of Monographs on Physics Vol. 130) (Oxford Univ. Press, 2005).

    Book  Google Scholar 

  12. 12

    Muskens, O. L. & Lagendijk, A. Broadband enhanced backscattering spectroscopy of strongly scattering media. Opt. Express 16, 1222–1231 (2008).

    ADS  Article  Google Scholar 

  13. 13

    Labeyrie, G. et al. Coherent backscattering of light by cold atoms. Phys. Rev. Lett. 83, 5266–5269 (1999).

    ADS  Article  Google Scholar 

  14. 14

    Labeyrie, G., Muller, C. A., Wiersma, D. S., Miniatura, C. & Kaiser, R. Observation of coherent backscattering of light by cold atoms. J. Opt. B 2, 672–685 (2000).

    ADS  Article  Google Scholar 

  15. 15

    Sapienza, R., Mujumdar, S., Cheung, C., Yodh, A. G . & Wiersma, D . Anisotropic weak localization of light. Phys. Rev. Lett. 92, 033903 (2004).

    ADS  Article  Google Scholar 

  16. 16

    Derode, A., Mamou, V., Padilla, F., Jenson, F. & Laugier, P. Dynamic coherent backscattering in a heterogeneous absorbing medium: application to human trabecular bone characterization. Appl. Phys. Lett. 87, 114101 (2005).

    ADS  Article  Google Scholar 

  17. 17

    Yoo, K. M., Tang, G. C. & Alfano, R. R. Coherent backscattering of light from biological tissues. Appl. Opt. 29, 3237–3239 (1990).

    ADS  Article  Google Scholar 

  18. 18

    Muskens, O. L., Venn, P., Van de Beek, T . & Wellens, T . Partial nonlinear reciprocity breaking through ultrafast dynamics in a random photonic medium. Phys. Rev. Lett. 108, 223906 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Bromberg, Y., Redding, B., Popoff, S. M. & Cao, H . Control of coherent backscattering by breaking optical reciprocity. Phys. Rev. A 93, 023826 (2016).

    ADS  Article  Google Scholar 

  20. 20

    Chanelière, T., Wilkowski, D., Bidel, Y., Kaiser, R . & Miniatura, C . Saturation-induced coherence loss in coherent backscattering of light. Phys. Rev. E 70, 036602 (2004).

    ADS  Article  Google Scholar 

  21. 21

    Balik, S. et al. Strong-field coherent backscattering of light in ultracold atomic 85Rb. J. Mod. Opt. 52, 2269–2278 (2005).

    ADS  Article  Google Scholar 

  22. 22

    Labeyrie, G., Delande, D., Muller, C. A., Miniatura, C. & Kaiser, R. Coherent backscattering of light by cold atoms: theory meets experiment. Europhys. Lett. 61, 327–333 (2003).

    ADS  Article  Google Scholar 

  23. 23

    Otto, A. Theory of first layer and single molecule surface enhanced Raman scattering (SERS). Phys. Status Solidi A 188, 1455–1470 (2001).

    ADS  Article  Google Scholar 

  24. 24

    Beams, R., Cançado, L. G., Oh, S. H., Jorio, A . & Novotny, L . Spatial coherence in near-field Raman scattering. Phys. Rev. Lett. 113, 186101 (2014).

    Article  Google Scholar 

  25. 25

    Waldermann, F. C. et al. Measuring phonon dephasing with ultrafast pulses using Raman spectral interference. Phys. Rev. B 78, 155201 (2008).

    ADS  Article  Google Scholar 

  26. 26

    Kupriyanov, D. V., Sokolov, I. M. & Havey, M. D. Antilocalization in coherent backscattering of light in a multi-resonance atomic system. Opt. Commun. 243, 165–173 (2004).

    ADS  Article  Google Scholar 

  27. 27

    Kupriyanov, D. V., Larionov, N. V., Sokolov, I. M. & Havey, M. D. Destructive interference in coherent backscattering of light by an ensemble of cold atoms. Opt. Spectrosc. 99, 380–385 (2005).

    Article  Google Scholar 

  28. 28

    Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotech. 9, 19–32 (2014).

    ADS  Article  Google Scholar 

  29. 29

    Irrera, A. et al. Quantum confinement and electroluminescence in ultrathin silicon nanowires fabricated by a maskless etching technique. Nanotechnology 23, 075204 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Fazio, B . et al. Strongly enhanced light trapping in a two-dimensional silicon nanowire random fractal array. Light Sci. Appl. 5, e16062 (2016).

    Article  Google Scholar 

  31. 31

    Peng, K. Q. et al. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Ed. 44, 2737–2742 (2005).

    Article  Google Scholar 

  32. 32

    Peng, K. Q., Yan, Y., Gao, S. P. & Zhu, J . Dendrite-assisted growth of silicon nanowires in electroless metal deposition. Adv. Funct. Mater. 13, 127–132 (2003).

    Article  Google Scholar 

  33. 33

    Akkermans, E., Wolf, P. E. & Maynard, R . Coherent backscattering of light by disordered media: analysis of the peak line shape. Phys. Rev. Lett. 56, 1471–1474 (1986).

    ADS  Article  Google Scholar 

  34. 34

    Akkermans, E., Wolf, P. E., Maynard, R. & Maret, G. Theoretical study of the coherent backscattering of light by disordered media. J. Phys. France 49, 77–98 (1988).

    ADS  Article  Google Scholar 

  35. 35

    Van der Mark, M. B., Van Albada, M. P. & Lagendijk, A. Light scattering in strongly scattering media: multiple scattering and weak localization. Phys. Rev. B 37, 3575–3592 (1988).

    ADS  Article  Google Scholar 

  36. 36

    Loudon, R. Theory of first-order Raman effect in crystals. Proc. R. Soc. Lond. A 275, 218–232 (1963).

    ADS  Article  Google Scholar 

  37. 37

    Yu, P. Y. & Cardona, M . Fundamentals of Semiconductors 4th edn (Springer, 2010).

    Book  Google Scholar 

  38. 38

    Loudon, R . The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964).

    ADS  Article  Google Scholar 

  39. 39

    Letcher, J. L., Kang, K., Cahil, D. G. & Diott, D. D . Effects of high carrier densities on phonon and carrier lifetimes in Si by time-resolved anti-Stokes Raman scattering. Appl. Phys. Lett. 90, 252104 (2007).

    ADS  Article  Google Scholar 

  40. 40

    Henry, A. S. & Chen, G. Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5, 1–12 (2008).

    Article  Google Scholar 

  41. 41

    Akkermans, E. & Montambaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2007).

  42. 42

    Wiersma, D. S . Light in Strongly Scattering and Amplifying Random Media PhD thesis, Univ. Amsterdam (1995).

  43. 43

    Baibarac, M., Baltog, I . & Lefrant, S . Abnormal anti-Stokes Raman emission as single beam coherent anti-Stokes Raman scattering like process in LiNbO3 and CdS powder. J. Appl. Phys. 110, 053106 (2011).

    ADS  Article  Google Scholar 

  44. 44

    Raymond Ooi, C. H. et al. Theory of femtosecond coherent anti-Stokes Raman backscattering enhanced by quantum coherence for standoff detection of bacterial spores. Phys. Rev. A 72, 023807 (2005).

    Google Scholar 

  45. 45

    Hokr, B. H. et al. Bright emission from a random Raman laser. Nat. Commun. 5, 4356 (2014).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank A. Lagendijk, N. Micali, F. Aliotta, S. Trusso and M. Liscidini for discussions. D.S.W. acknowledges support from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 291349. F.P. acknowledges partial support from the European Commission and MIUR through projects PON02_00355_3391233 (Energetic) and PONa3_00136 (BRIT).

Author information

Affiliations

Authors

Contributions

B.F. proposed the experiments and initiated the project. B.F. and M.G. conceived the idea of coherent Raman backscattering. A.I. realized the samples and performed the structural characterization (with contributions from M.J.L.F., C.D. and P.M.). S.P. and S.D.S. realized the experimental set-up and performed the experiments under supervision from M.G. (with contributions from C.D. and B.F.). B.F. and C.D. performed the data analysis (with contributions from M.A.I., R.S. and M.G.). D.S.W. developed the theoretical formalism of multiple Raman scattering. M.G. and S.D.S. developed the theoretical model of dephasing. B.F. and M.G. interpreted the data (with input from D.S.W.). B.F. and M.G. co-wrote the paper (with contributions from A.I. and F.P.). B.F., M.G. and F.P. coordinated the project. P.G.G., M.P. and C.S.V. and all authors contributed to the general discussion and to revision of the manuscript.

Corresponding authors

Correspondence to Barbara Fazio, Matteo Galli or Francesco Priolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1433 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fazio, B., Irrera, A., Pirotta, S. et al. Coherent backscattering of Raman light. Nature Photon 11, 170–176 (2017). https://doi.org/10.1038/nphoton.2016.278

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing