Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields


Holographic displays generate realistic 3D images that can be viewed without the need for any visual aids. They operate by generating carefully tailored light fields that replicate how humans see an actual environment. However, the realization of high-performance, dynamic 3D holographic displays has been hindered by the capabilities of present wavefront modulator technology. In particular, spatial light modulators have a small diffraction angle range and limited pixel number limiting the viewing angle and image size of a holographic 3D display. Here, we present an alternative method to generate dynamic 3D images by controlling volume speckle fields significantly enhancing image definition. We use this approach to demonstrate a dynamic display of micrometre-sized optical foci in a volume of 8 mm × 8 mm × 20 mm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Concept of scattering display.
Figure 2: Experimental set-up.
Figure 3: Wavelength-scale focusing over a wide area through diffusers.
Figure 4: Construction of a spiral trajectory with a generated focus.
Figure 5: Dynamic images of a moving 3D tetrahedron.
Figure 6: Projection using a DMD.


  1. 1

    Yaraş, F., Kang, H. & Onural, L. State of the art in holographic displays: a survey. J. Display Technol. 6, 443–454 (2010).

    ADS  Article  Google Scholar 

  2. 2

    Fukaya, N. et al. Expansion of the image size and viewing zone in holographic display using liquid crystal devices. Proc. SPIE 2406, 283 (1995).

    Google Scholar 

  3. 3

    Maeno, K., Fukaya, N., Nishikawa, O., Sato, K. & Honda, T. Electro-holographic display using 15mega pixels LCD. Proc. SPIE 2652, 15 (1996).

    Google Scholar 

  4. 4

    Hahn, J., Kim, H., Lim, Y., Park, G. & Lee, B. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators. Opt. Express 16, 12372–12386 (2008).

    ADS  Article  Google Scholar 

  5. 5

    Takaki, Y. & Okada, N. Hologram generation by horizontal scanning of a high-speed spatial light modulator. Appl. Opt. 48, 3255–3260 (2009).

    ADS  Article  Google Scholar 

  6. 6

    Finke, G., Kozacki, T. & Kujawińska, M. Wide viewing angle holographic display with a multi-spatial light modulator array. Proc. SPIE 7723, 77230A (2010).

    Google Scholar 

  7. 7

    Yaraş, F., Kang, H. & Onural, L. Circular holographic video display system. Opt. Express 19, 9147–9156 (2011).

    ADS  Article  Google Scholar 

  8. 8

    Kozacki, T., Kujawińska, M., Finke, G., Hennelly, B. & Pandey, N. Extended viewing angle holographic display system with tilted SLMs in a circular configuration. Appl. Opt. 51, 1771–1780 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Takaki, Y. & Fujii, K. Viewing-zone scanning holographic display using a MEMS spatial light modulator. Opt. Express 22, 24713–24721 (2014).

    ADS  Article  Google Scholar 

  10. 10

    Matsumoto, Y. & Takaki, Y. Improvement of gray-scale representation of horizontally scanning holographic display using error diffusion. Opt. Lett. 39, 3433–3436 (2014).

    ADS  Article  Google Scholar 

  11. 11

    Liu, Y.-Z., Pang, X.-N., Jiang, S. & Dong, J.-W. Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling. Opt. Express 21, 12068–12076 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Sando, Y., Barada, D. & Yatagai, T. Holographic 3D display observable for multiple simultaneous viewers from all horizontal directions by using a time division method. Opt. Lett. 39, 5555–5557 (2014).

    ADS  Article  Google Scholar 

  13. 13

    Lum, Z. M. A., Liang, X., Pan, Y., Zheng, R. & Xu, X. Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling. Opt. Eng. 52, 015802 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Blanche, P.-A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Tay, S. et al. An updatable holographic three-dimensional display. Nature 451, 694–698 (2008).

    ADS  Article  Google Scholar 

  16. 16

    Sun, J., Timurdogan, E., Yaacobi, A., Hosseini, E. S. & Watts, M. R. Large-scale nanophotonic phased array. Nature 493, 195–199 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Larouche, S., Tsai, Y.-J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nature Mater. 11, 450–454 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

    ADS  Article  Google Scholar 

  19. 19

    Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).

    ADS  Article  Google Scholar 

  20. 20

    Li, X. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  22. 22

    Vellekoop, I., Lagendijk, A. & Mosk, A. Exploiting disorder for perfect focusing. Nat. Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  23. 23

    Park, J.-H. et al. Subwavelength light focusing using random nanoparticles. Nat. Photon. 7, 454–458 (2013).

    ADS  Article  Google Scholar 

  24. 24

    Conkey, D. B. & Piestun, R. Color image projection through a strongly scattering wall. Opt. Express 20, 27312–27318 (2012).

    ADS  Article  Google Scholar 

  25. 25

    Park, J. H., Park, C. H., Yu, H., Cho, Y. H. & Park, Y. K. Active spectral filtering through turbid media. Opt. Lett. 37, 3261–3263 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Frauel, Y., Naughton, T. J., Matoba, O., Tajahuerce, E. & Javidi, B. Three-dimensional imaging and processing using computational holographic imaging. Proc. IEEE 94, 636–653 (2006).

    Article  Google Scholar 

  27. 27

    Huebschman, M., Munjuluri, B. & Garner, H. Dynamic holographic 3-D image projection. Opt. Express 11, 437–445 (2003).

    ADS  Article  Google Scholar 

  28. 28

    Smalley, D., Smithwick, Q., Bove, V., Barabas, J. & Jolly, S. Anisotropic leaky-mode modulator for holographic video displays. Nature 498, 313–317 (2013).

    ADS  Article  Google Scholar 

  29. 29

    Vellekoop, I. M. & Mosk, A. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  30. 30

    Cizmar, T. & Dholakia, K. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun. 3, 1027 (2012).

    ADS  Article  Google Scholar 

  31. 31

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  32. 32

    Yu, H. et al. Measuring large optical transmission matrices of disordered media. Phys. Rev. Lett. 111, 153902 (2013).

    ADS  Article  Google Scholar 

  33. 33

    Park, C. et al. Full-field subwavelength imaging using a scattering superlens. Phys. Rev. Lett. 113, 113901 (2014).

    ADS  Article  Google Scholar 

  34. 34

    Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015).

    ADS  Article  Google Scholar 

  35. 35

    Yoon, J., Lee, K., Park, J. & Park, Y. Measuring optical transmission matrices by wavefront shaping. Opt. Express 23, 10158–10167 (2015).

    ADS  Article  Google Scholar 

  36. 36

    Park, J.-H., Park, C., Yu, H., Cho, Y.-H. & Park, Y. Dynamic active wave plate using random nanoparticles. Opt. Express 20, 17010–17016 (2012).

    ADS  Article  Google Scholar 

  37. 37

    Tao, X. D., Bodington, D., Reinig, M. & Kubby, J. High-speed scanning interferometric focusing by fast measurement of binary transmission matrix for channel demixing. Opt. Express 23, 14168–14187 (2015).

    ADS  Article  Google Scholar 

Download references


The authors thank KAIST, Tomocube Inc., the Korean Ministry of Education, Science and Technology, and the National Research Foundation (2015R1A3A2066550, 2014M3C1A3052567, 2014K1A3A1A09063027).

Author information




H.Y. performed the experiments and analysed the data. K.L. and J.P. contributed analytic tools. Y.P. conceived and supervised the project. All co-authors wrote the manuscript.

Corresponding author

Correspondence to YongKeun Park.

Ethics declarations

Competing interests

H.Y. and Y.P. are inventors on a patent describing the device for holographic display (US patent number 9,354,605; Republic of Korea patent number 10-1665238-0000).

Supplementary information

Supplementary information

Supplementary information (PDF 1964 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Lee, K., Park, J. et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nature Photon 11, 186–192 (2017).

Download citation

Further reading


Quick links