ACS Photon. http://doi.org/bvg4 (2016)

Credit: AMERICAN CHEMICAL SOCIETY

The rotation of the polarization of light by magneto-optical materials is well exploited by macroscale devices such as optical isolators, however, demonstrations in nano-optics or plasmonics are lacking due to issues such as dissipation and phase-matching. Now, Curtis Firby and colleagues from Canada have proposed an integrated magnetoplasmonic Faraday rotator. They predict 99.4% polarization conversion over an 830-μm-long device using low-loss modes that can propagate over a distance of 1 mm. The proposed structure, designed for 1,550 nm wavelength operation, is a 450-nm-wide ridge waveguide with multilayers stacked vertically within. A 25-nm-thick silver layer is surrounded by two 20-nm-thick SiO2 layers. A high-index 'hat' for the ridge is formed by a 725-nm-thick layer of TiO2 while the bottom high-index ridge region is a 320-nm-thick Bi:YIG rib on top of a 260-nm-thick Bi:YIG platform. The team designed the waveguide structure such that transverse electric and transverse magnetic modes are phase-matched and low-loss but with sufficient mode overlap in the Bi:YIG medium to cause the polarization rotation. The design could lead to miniature integrated circuitry that is capable of modulating polarization at speeds as fast as 10 GHz.