Polarization domain walls in optical fibres as topological bits for data transmission


Domain walls are topological defects that occur at symmetry-breaking phase transitions. Although domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalents in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in a well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink–antikink solitary wave propagation in nonlinear fibre optics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Experimental observation of polarization domain wall (PDW) solitons.
Figure 3: Experimental data transmission through PDWs.
Figure 4: Polarization segregation phenomenon.


  1. 1

    Weiss, P. L'hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Rad. 6, 661–690 (1907).

  2. 2

    Reichl, L. A Modern Course in Statistical Physics (Wiley-VCH, 2004).

  3. 3

    Dauxois, T. & Peyrard, M. Physics of Solitons (Cambridge Univ. Press, 2010).

  4. 4

    Stamper-Kurn, D. N. & Ueda, M. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).

  5. 5

    Weinberg, S. The Quantum Theory of Fields Vol. 2 (Cambridge Univ. Press, 1995).

  6. 6

    Parpia, D. Y., Tanner, B. K. & Lord, D. G. Direct optical observation of ferromagnetic domains. Nature 303, 684–685 (1983).

  7. 7

    Kosevich, A. M. in Solitons (eds Trullinger, S. E., Zakharov, V. E. & Pokrovsky, V. L.) Ch. 11 (Elsevier, 1986).

  8. 8

    Unguris, J., Celotta, R. J. & Pierce, D. T. Observation of two different oscillation periods in the exchange coupling of Fe/Cr/Fe(100). Phys. Rev. Lett. 67, 140–143 (1991).

  9. 9

    Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

  10. 10

    Parkin, S. S., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

  11. 11

    Currivan-Incorvia, J. A. et al. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls. Nat. Commun. 7, 10275 (2016).

  12. 12

    Tetienne, J. P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).

  13. 13

    Haelterman, M. & Sheppard, A. P. Bifurcation of the dark soliton and polarization domain walls in nonlinear dispersive media. Phys. Rev E 49, 4512–4518 (1994).

  14. 14

    Haelterman, M. & Sheppard, A. P. Vector soliton associated with polarization modulational instability in the normal-dispersion regime. Phys. Rev E 49, 3389–3399 (1994).

  15. 15

    Malomed, B. A. Optical domain walls. Phys. Rev. E 50, 1565–1571 (1994).

  16. 16

    Sheppard, A. P. & Haelterman, M. Polarization-domain solitary waves of circular symmetry in Kerr media. Opt. Lett. 19, 859–861 (1994).

  17. 17

    Berkhoer, A. L. & Zakharov, V. E. Self-excitation of waves with different polarizations in nonlinear media. Sov. Phys. JETP 31, 486–490 (1970).

  18. 18

    Haelterman, M. Polarisation domain wall solitary waves for optical fibre transmission. Electron. Lett. 30, 1510–1511 (1994).

  19. 19

    Haelterman, M. Colour domain wall solitary waves for nonreturn-to-zero transmission scheme. Electron. Lett. 31, 741–742 (1995).

  20. 20

    Wabnitz, S. Cross-polarization modulation domain wall solitons for WDM signals in birefringent optical fibers. IEEE Photon. Technol. Lett. 21, 875–877 (2009).

  21. 21

    Gordon, J. P. & Haus, H. A. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986).

  22. 22

    Kockaert, P., Haelterman, M., Pitois, S. & Millot, G. Isotropic polarization modulational instability and domain walls in spun fibers. Appl. Phys. Lett. 75, 2873–2875 (1999).

  23. 23

    Gutty, F. et al. Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber. Opt. Lett. 24, 1389–1391 (1999).

  24. 24

    Quinton, L. W. & Roy, R. Fast polarization dynamics of an erbium-doped fiber ring laser. Opt. Lett. 21, 1478–1480 (1996).

  25. 25

    Williams, Q. L., García-Ojalvo, J. & Roy, R. Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects. Phys. Rev. A 55, 2376–2386 (1997).

  26. 26

    Zhang, H., Tang, D. Y., Zhao, L. M. & Wu, X. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers. Phys. Rev. B 80, 052302 (2009).

  27. 27

    Lecaplain, C., Grelu, P. & Wabnitz, S. Polarization-domain-wall complexes in fiber lasers. J. Opt. Soc. Am. B 30, 211–218 (2013).

  28. 28

    Marconi, M., Javaloyes, J., Barland, S., Balle, S. & Giudici, M. Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays. Nat. Photon. 9, 450–455 (2015).

  29. 29

    Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

  30. 30

    Tsatourian, V. et al. Polarisation dynamics of vector soliton molecules in mode locked fibre laser. Sci. Rep. 3, 3154 (2013).

  31. 31

    Tomlinson, W. J., Stolen, R. H. & Johnson, A. M. Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 467–469 (1985).

  32. 32

    Rothenberg, J. E. & Grischkowsky, D. Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. Phys. Rev. Lett. 62, 531–534 (1989).

  33. 33

    Fatome, J. et al. Observation of optical undular bores in multiple four-wave mixing fibers. Phys. Rev. X 4, 021022 (2014).

  34. 34

    Gilles, M. et al. Data transmission through polarization domain walls in standard telecom optical fibers. In Spatiotemporal Complexity in Nonlinear Optics (SCNO) (IEEE, 2015).

  35. 35

    Pitois, S., Millot, G. & Wabnitz, S. Polarization domain wall solitons with counterpropagating laser beams. Phys. Rev. Lett. 81, 1409–1412 (1998).

  36. 36

    Manakov, S. V. On the theory of two dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974).

  37. 37

    Wai, P. K. A. & Menyuk, C. R. Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. IEEE J. Lightw. Technol. 14, 148–157 (1996).

  38. 38

    Marcuse, D., Menyuk, C. R. & Wai, P. K. A. Application of the Manakov–PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. IEEE J. Lightw. Technol. 15, 1735–1746 (1997).

  39. 39

    Geisler, T. Low PMD transmission fibers. In European Conference on Optical Communications (ECOC) (IEEE, 2006).

  40. 40

    Barlow, A. J., Ramskov-Hansen, J. J. & Payne, D. N. Birefringence and polarization mode-dispersion in spun singlemode fibers. Appl. Opt. 20, 2962–2968 (1981).

  41. 41

    Li, M. J. & Nolan, D. A. Fiber spin-profile designs for producing fibers with low polarization mode dispersion. Opt. Lett. 23, 1659–1661 (1998).

  42. 42

    Palmieri, L. Polarization properties of spun single-mode fibers. IEEE J. Lightw. Technol. 24, 4075–4088 (2006).

  43. 43

    Galtarossa, A., Palmieri, L. & Sarchi, D. Measure of spin period in randomly birefringent low-PMD fibers. IEEE Photon. Technol. Lett. 16, 1131–1133 (2004).

  44. 44

    Nolan, D. A., Chin, X. & Li, M. J. Fibers with low polarization-mode dispersion. IEEE J. Lightw. Technol. 22, 1066–1088 (2004).

  45. 45

    Palmieri, L., Geisler, T. & Galtarossa, A. Effects of spin process on birefringence strength of single-mode fibers. Opt. Express 20, 1–6 (2012).

  46. 46

    Pitois, S., Millot, G., Grelu, P. & Haelterman, M. Generation of optical domain-wall structures from modulational instability in a bimodal fiber. Phys. Rev E 60, 994–1000 (1999).

  47. 47

    Kurzweil, J. & Jarnık, J. Limit processes in ordinary differential equations. J. Appl. Math. Phys. 38, 241–256 (1987).

  48. 48

    Fouque, J. P., Garnier, J., Papanicolaou, G. & Solna, K. Wave Propagation and Time Reversal in Randomly Layered Media Ch. 6 (Springer, 2007).

  49. 49

    Picozzi, A. et al. Optical wave turbulence: toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

  50. 50

    Godin, T. et al. Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Opt. Express 21, 18452–18460 (2013).

Download references


J.F. acknowledges financial support from the European Research Council under the European Community's Seventh Framework Programme (ERC starting grant PETAL no. 306633, Polarization condEnsation for Telecom AppLications). The authors acknowledge the Conseil Régional de Bourgogne Franche-Comté under the PARI Action Photcom programme as well as the Labex ACTION programme (ANR-11-LABX-0001-01). The authors thank S. Pitois and T. Geisler for discussions, E. Paul for illustrations, and S. Pernot, V. Tissot and B. Sinardet for electronic development. M.Gu. acknowledges support from the European Commission via a Marie Skodowska-Curie Fellowship (IF project AMUSIC – 02702).

Author information




J.F., P-Y.B. and M.Gi. performed the experiments. M.Gu., J.G. and A.P. contributed to the theoretical and numerical analysis. All authors participated in analysis of the results. J.F. wrote the paper and supervised the project.

Corresponding author

Correspondence to J. Fatome.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 711 kb)


Supplementary movie 1 (MP4 5300 kb)

Supplementary information

Supplementary movie 1 (MP4 5300 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gilles, M., Bony, P., Garnier, J. et al. Polarization domain walls in optical fibres as topological bits for data transmission. Nature Photon 11, 102–107 (2017). https://doi.org/10.1038/nphoton.2016.262

Download citation

Further reading