Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polarization domain walls in optical fibres as topological bits for data transmission

Abstract

Domain walls are topological defects that occur at symmetry-breaking phase transitions. Although domain walls have been intensively studied in ferromagnetic materials, where they nucleate at the boundary of neighbouring regions of oppositely aligned magnetic dipoles, their equivalents in optics have not been fully explored so far. Here, we experimentally demonstrate the existence of a universal class of polarization domain walls in the form of localized polarization knots in conventional optical fibres. We exploit their binding properties for optical data transmission beyond the Kerr limits of normally dispersive fibres. In particular, we demonstrate how trapping energy in a well-defined train of polarization domain walls allows undistorted propagation of polarization knots at a rate of 28 GHz along a 10 km length of normally dispersive optical fibre. These results constitute the first experimental observation of kink–antikink solitary wave propagation in nonlinear fibre optics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Experimental observation of polarization domain wall (PDW) solitons.
Figure 3: Experimental data transmission through PDWs.
Figure 4: Polarization segregation phenomenon.

Similar content being viewed by others

References

  1. Weiss, P. L'hypothèse du champ moléculaire et la propriété ferromagnétique. J. Phys. Rad. 6, 661–690 (1907).

    MATH  Google Scholar 

  2. Reichl, L. A Modern Course in Statistical Physics (Wiley-VCH, 2004).

    MATH  Google Scholar 

  3. Dauxois, T. & Peyrard, M. Physics of Solitons (Cambridge Univ. Press, 2010).

    MATH  Google Scholar 

  4. Stamper-Kurn, D. N. & Ueda, M. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).

    Article  ADS  Google Scholar 

  5. Weinberg, S. The Quantum Theory of Fields Vol. 2 (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  6. Parpia, D. Y., Tanner, B. K. & Lord, D. G. Direct optical observation of ferromagnetic domains. Nature 303, 684–685 (1983).

    Article  ADS  Google Scholar 

  7. Kosevich, A. M. in Solitons (eds Trullinger, S. E., Zakharov, V. E. & Pokrovsky, V. L.) Ch. 11 (Elsevier, 1986).

    Google Scholar 

  8. Unguris, J., Celotta, R. J. & Pierce, D. T. Observation of two different oscillation periods in the exchange coupling of Fe/Cr/Fe(100). Phys. Rev. Lett. 67, 140–143 (1991).

    Article  ADS  Google Scholar 

  9. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  ADS  Google Scholar 

  10. Parkin, S. S., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  ADS  Google Scholar 

  11. Currivan-Incorvia, J. A. et al. Logic circuit prototypes for three-terminal magnetic tunnel junctions with mobile domain walls. Nat. Commun. 7, 10275 (2016).

    Article  ADS  Google Scholar 

  12. Tetienne, J. P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).

    Article  ADS  Google Scholar 

  13. Haelterman, M. & Sheppard, A. P. Bifurcation of the dark soliton and polarization domain walls in nonlinear dispersive media. Phys. Rev E 49, 4512–4518 (1994).

    Article  ADS  Google Scholar 

  14. Haelterman, M. & Sheppard, A. P. Vector soliton associated with polarization modulational instability in the normal-dispersion regime. Phys. Rev E 49, 3389–3399 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  15. Malomed, B. A. Optical domain walls. Phys. Rev. E 50, 1565–1571 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  16. Sheppard, A. P. & Haelterman, M. Polarization-domain solitary waves of circular symmetry in Kerr media. Opt. Lett. 19, 859–861 (1994).

    Article  ADS  Google Scholar 

  17. Berkhoer, A. L. & Zakharov, V. E. Self-excitation of waves with different polarizations in nonlinear media. Sov. Phys. JETP 31, 486–490 (1970).

    ADS  Google Scholar 

  18. Haelterman, M. Polarisation domain wall solitary waves for optical fibre transmission. Electron. Lett. 30, 1510–1511 (1994).

    Article  Google Scholar 

  19. Haelterman, M. Colour domain wall solitary waves for nonreturn-to-zero transmission scheme. Electron. Lett. 31, 741–742 (1995).

    Article  ADS  Google Scholar 

  20. Wabnitz, S. Cross-polarization modulation domain wall solitons for WDM signals in birefringent optical fibers. IEEE Photon. Technol. Lett. 21, 875–877 (2009).

    Article  ADS  Google Scholar 

  21. Gordon, J. P. & Haus, H. A. Random walk of coherently amplified solitons in optical fiber transmission. Opt. Lett. 11, 665–667 (1986).

    Article  ADS  Google Scholar 

  22. Kockaert, P., Haelterman, M., Pitois, S. & Millot, G. Isotropic polarization modulational instability and domain walls in spun fibers. Appl. Phys. Lett. 75, 2873–2875 (1999).

    Article  ADS  Google Scholar 

  23. Gutty, F. et al. Generation and characterization of 0.6-THz polarization domain-wall trains in an ultralow-birefringence spun fiber. Opt. Lett. 24, 1389–1391 (1999).

    Article  ADS  Google Scholar 

  24. Quinton, L. W. & Roy, R. Fast polarization dynamics of an erbium-doped fiber ring laser. Opt. Lett. 21, 1478–1480 (1996).

    Article  Google Scholar 

  25. Williams, Q. L., García-Ojalvo, J. & Roy, R. Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: inclusion of stochastic effects. Phys. Rev. A 55, 2376–2386 (1997).

    Article  ADS  Google Scholar 

  26. Zhang, H., Tang, D. Y., Zhao, L. M. & Wu, X. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers. Phys. Rev. B 80, 052302 (2009).

    Article  ADS  Google Scholar 

  27. Lecaplain, C., Grelu, P. & Wabnitz, S. Polarization-domain-wall complexes in fiber lasers. J. Opt. Soc. Am. B 30, 211–218 (2013).

    Article  ADS  Google Scholar 

  28. Marconi, M., Javaloyes, J., Barland, S., Balle, S. & Giudici, M. Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays. Nat. Photon. 9, 450–455 (2015).

    Article  ADS  Google Scholar 

  29. Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article  ADS  Google Scholar 

  30. Tsatourian, V. et al. Polarisation dynamics of vector soliton molecules in mode locked fibre laser. Sci. Rep. 3, 3154 (2013).

    Article  Google Scholar 

  31. Tomlinson, W. J., Stolen, R. H. & Johnson, A. M. Optical wave breaking of pulses in nonlinear optical fibers. Opt. Lett. 10, 467–469 (1985).

    Article  ADS  Google Scholar 

  32. Rothenberg, J. E. & Grischkowsky, D. Observation of the formation of an optical intensity shock and wave breaking in the nonlinear propagation of pulses in optical fibers. Phys. Rev. Lett. 62, 531–534 (1989).

    Article  ADS  Google Scholar 

  33. Fatome, J. et al. Observation of optical undular bores in multiple four-wave mixing fibers. Phys. Rev. X 4, 021022 (2014).

    Google Scholar 

  34. Gilles, M. et al. Data transmission through polarization domain walls in standard telecom optical fibers. In Spatiotemporal Complexity in Nonlinear Optics (SCNO) (IEEE, 2015).

  35. Pitois, S., Millot, G. & Wabnitz, S. Polarization domain wall solitons with counterpropagating laser beams. Phys. Rev. Lett. 81, 1409–1412 (1998).

    Article  ADS  Google Scholar 

  36. Manakov, S. V. On the theory of two dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974).

    ADS  Google Scholar 

  37. Wai, P. K. A. & Menyuk, C. R. Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. IEEE J. Lightw. Technol. 14, 148–157 (1996).

    Article  ADS  Google Scholar 

  38. Marcuse, D., Menyuk, C. R. & Wai, P. K. A. Application of the Manakov–PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. IEEE J. Lightw. Technol. 15, 1735–1746 (1997).

    Article  ADS  Google Scholar 

  39. Geisler, T. Low PMD transmission fibers. In European Conference on Optical Communications (ECOC) (IEEE, 2006).

  40. Barlow, A. J., Ramskov-Hansen, J. J. & Payne, D. N. Birefringence and polarization mode-dispersion in spun singlemode fibers. Appl. Opt. 20, 2962–2968 (1981).

    Article  ADS  Google Scholar 

  41. Li, M. J. & Nolan, D. A. Fiber spin-profile designs for producing fibers with low polarization mode dispersion. Opt. Lett. 23, 1659–1661 (1998).

    Article  ADS  Google Scholar 

  42. Palmieri, L. Polarization properties of spun single-mode fibers. IEEE J. Lightw. Technol. 24, 4075–4088 (2006).

    Article  ADS  Google Scholar 

  43. Galtarossa, A., Palmieri, L. & Sarchi, D. Measure of spin period in randomly birefringent low-PMD fibers. IEEE Photon. Technol. Lett. 16, 1131–1133 (2004).

    Article  ADS  Google Scholar 

  44. Nolan, D. A., Chin, X. & Li, M. J. Fibers with low polarization-mode dispersion. IEEE J. Lightw. Technol. 22, 1066–1088 (2004).

    Article  ADS  Google Scholar 

  45. Palmieri, L., Geisler, T. & Galtarossa, A. Effects of spin process on birefringence strength of single-mode fibers. Opt. Express 20, 1–6 (2012).

    Article  ADS  Google Scholar 

  46. Pitois, S., Millot, G., Grelu, P. & Haelterman, M. Generation of optical domain-wall structures from modulational instability in a bimodal fiber. Phys. Rev E 60, 994–1000 (1999).

    Article  ADS  Google Scholar 

  47. Kurzweil, J. & Jarnık, J. Limit processes in ordinary differential equations. J. Appl. Math. Phys. 38, 241–256 (1987).

    MathSciNet  MATH  Google Scholar 

  48. Fouque, J. P., Garnier, J., Papanicolaou, G. & Solna, K. Wave Propagation and Time Reversal in Randomly Layered Media Ch. 6 (Springer, 2007).

    MATH  Google Scholar 

  49. Picozzi, A. et al. Optical wave turbulence: toward a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 542, 1–132 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  50. Godin, T. et al. Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Opt. Express 21, 18452–18460 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.F. acknowledges financial support from the European Research Council under the European Community's Seventh Framework Programme (ERC starting grant PETAL no. 306633, Polarization condEnsation for Telecom AppLications). The authors acknowledge the Conseil Régional de Bourgogne Franche-Comté under the PARI Action Photcom programme as well as the Labex ACTION programme (ANR-11-LABX-0001-01). The authors thank S. Pitois and T. Geisler for discussions, E. Paul for illustrations, and S. Pernot, V. Tissot and B. Sinardet for electronic development. M.Gu. acknowledges support from the European Commission via a Marie Skodowska-Curie Fellowship (IF project AMUSIC – 02702).

Author information

Authors and Affiliations

Authors

Contributions

J.F., P-Y.B. and M.Gi. performed the experiments. M.Gu., J.G. and A.P. contributed to the theoretical and numerical analysis. All authors participated in analysis of the results. J.F. wrote the paper and supervised the project.

Corresponding author

Correspondence to J. Fatome.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 711 kb)

Supplementary information

Supplementary movie 1 (MP4 5300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilles, M., Bony, PY., Garnier, J. et al. Polarization domain walls in optical fibres as topological bits for data transmission. Nature Photon 11, 102–107 (2017). https://doi.org/10.1038/nphoton.2016.262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing