Ripplon laser through stimulated emission mediated by water waves


Lasers rely on stimulated electronic transition, a quantum phenomenon in the form of population inversion. In contrast, phonon masers1,2,3 depend on stimulated Raman scattering and are entirely classical. Here we extend Raman lasers1,2,3 to rely on capillary waves, which are unique to the liquid phase of matter and relate to the attraction between intimate fluid particles. We fabricate resonators that co-host capillary4 and optical modes5, control them to operate at their non-resolved sideband and observe stimulated capillary scattering and the coherent excitation of capillary resonances at kilohertz rates (which can be heard in audio files recorded by us). By exchanging energy between electromagnetic and capillary waves, we bridge the interfacial tension phenomena at the liquid phase boundary to optics. This approach may impact optofluidics by allowing optical control, interrogation and cooling6 of water waves.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Light–matter interactions.
Figure 2: Experimental set-up.
Figure 3: Experimental results.


  1. 1

    Chiao, R., Garmire, E. & Townes, C. in Proc. Inter. School Phys. Enrico Fermi Course XXXI, Varenna Italy, 19–31 (1963).

  2. 2

    Chiao, R. Y., Townes, C. H. & Stoicheff, B. P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves. Phys. Rev. Lett. 12, 592–595 (1964).

  3. 3

    Shen, Y. R. & Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965).

  4. 4

    Rayleigh, L. Proc. R. Soc. Lond. 29, 71–97 (1879).

  5. 5

    Ashkin, A. & Dziedzic, J. Observation of resonances in the radiation pressure on dielectric spheres. Phys. Rev. Lett. 38, 1351–1354 (1977).

  6. 6

    Aspect, A., Arimondo, E., Kaiser, R. E. A., Vansteenkiste, N. & Cohen-Tannoudji, C. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–829 (1988).

  7. 7

    Noginov, M. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

  8. 8

    Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

  9. 9

    Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395–399 (2010).

  10. 10

    Mitsui, T. Observation of ripplon on the liquid droplet adhered to the tip of an optical fiber. Jpn. J. Appl. Phys. 43, 6425–6428 (2004).

  11. 11

    Metzger, C. H. & Karrai, K. Cavity cooling of a microlever. Nature 432, 1002–1005 (2004).

  12. 12

    Maayani, S., Martin, L. L., Kaminski, S. & Carmon, T. Cavity optocapillaries. Optica 3, 552–555 (2016).

  13. 13

    Kittel, C. Introduction to Solid State Physics (Wiley, 2005).

  14. 14

    Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

  15. 15

    Tzeng, H.-M., Wall, K. F., Long, M. & Chang, R. Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances. Opt. Lett. 9, 499–501 (1984).

  16. 16

    Hossein-Zadeh, M. & Vahala, K. J. Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium. Opt. Express 14, 10800–10810 (2006).

  17. 17

    Jonáš, A., Karadag, Y., Mestre, M. & Kiraz, A. Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides. J. Opt. Soc. Am. B 29, 3240–3247 (2012).

  18. 18

    Kaminski, S., Martin, L. L. & Carmon, T. Tweezers controlled resonator. Opt. Express 23, 28914–28919 (2015).

  19. 19

    Dahan, R., Martin, L. L. & Carmon, T. Droplets acoustics. Optica 3, 175–178 (2016).

  20. 20

    Maayani, S., Martin, L. L. & Carmon, T. Water-walled microfluidics makes an ultimate optical finesse. Nat. Commun. 7, 10435 (2016).

  21. 21

    Oxborrow, M. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEEE Trans. Microw. Theory 55, 1209–1218 (2007).

  22. 22

    Strani, M. & Sabetta, F. Free vibrations of a drop in partial contact with a solid support. J. Fluid Mech. 141, 233–247 (1984).

  23. 23

    Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

  24. 24

    Gorodetsky, M. L. & Ilchenko, V. S. Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147–154 (1999).

  25. 25

    Carmon, T., Yang, L. & Vahala, K. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

  26. 26

    Milonni, P. W. & Eberly, J. H. Lasers 324–327 (Wiley, 1988).

  27. 27

    Behroozi, F., Smith, J. & Even, W. Stokes’ dream: measurement of fluid viscosity from the attenuation of capillary waves. Am. J. Phys. 78, 1165–1169 (2010).

  28. 28

    Rokhsari, H., Kippenberg, T., Carmon, T. & Vahala, K. J. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13, 5293–5301 (2005).

  29. 29

    Carmon, T. & Vahala, K. J. Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency. Phys. Rev. Lett. 98, 123901 (2007).

  30. 30

    Knight, J., Cheung, G., Jacques, F. & Birks, T. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997).

  31. 31

    Little, B. E., Laine, J.-P. & Haus, H. A. Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators. J. Lightwave Technol. 17, 704–715 (1999).

Download references


This research was supported by the Israeli Centers of Research Excellenece (ICore) Circle of Light and by the Israeli Science Foundation under grant no. 2013/15.

Author information

S.K. and L.L.M. fabricated the devices and performed the experiments. S.K. and S.M. analysed the data. L.L.M. and T.C. supervised the research.

Correspondence to Leopoldo L. Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 190 kb)

Supplementary information

Supplementary Movie 1 (GIF 549 kb)

Supplementary information

Supplementary Movie 2 (GIF 501 kb)

Supplementary information

Supplementary Movie 3 (WMV 599 kb)

Supplementary information

Supplementary Movie 4 (WMV 4927 kb)

Supplementary information

Supplementary Movie 5 (WMV 130 kb)

Supplementary information

Supplementary Movie 6 (WMV 982 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaminski, S., Martin, L., Maayani, S. et al. Ripplon laser through stimulated emission mediated by water waves. Nature Photon 10, 758–761 (2016).

Download citation

Further reading