Abstract

X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses with a narrow energy bandwidth and unprecedented brightness. Ultrafast physical and chemical dynamics, initiated with a site-specific X-ray pulse, can be explored using XFELs with a second ultrashort X-ray probe pulse. However, existing double-pulse schemes are complicated, difficult to customize or provide only low-intensity pulses. Here we present the novel fresh-slice technique for multicolour pulse production, wherein different temporal slices of an electron bunch lase to saturation in separate undulator sections. This method combines electron bunch tailoring from a passive wakefield device with trajectory control to provide multicolour pulses. The fresh-slice scheme outperforms existing techniques at soft X-ray wavelengths. It produces femtosecond pulses with a power of tens of gigawatts and flexible colour separation. The pulse delay can be varied from temporal overlap to almost one picosecond. We also demonstrate the first three-colour XFEL and variably polarized two-colour pulses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & The structural origin of anomalous properties of liquid water. Nat. Commun. 6, 8998 (2015).

  2. 2.

    et al. Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys. Rev. Lett. 75, 152–155 (1995).

  3. 3.

    et al. Charge-compensation in 3D-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

  4. 4.

    , & Coherent anti-stokes Raman spectroscopy. Appl. Phys. Lett. 25, 387–390 (1974).

  5. 5.

    & Resonance coherent anti-stokes Raman spectroscopy of iodine in solution. J. Chem. Phys. 105, 2177–2187 (1996).

  6. 6.

    et al. Ultrafast dynamics of solute-solvent complexation observed at thermal equilibrium in real time. Science 309, 1338–1343 (2005).

  7. 7.

    , & Ultrafast 2D-IR vibrational echo spectroscopy: a probe of molecular dynamics. Laser Phys. Lett. 4, 704–718 (2007).

  8. 8.

    , , , & Structural dynamics of a catalytic monolayer probed by ultrafast 2D IR vibrational echoes. Science 334, 634–639 (2011).

  9. 9.

    & The ultimate X-ray machine. Sci. Am. 24, 54–61 (2015).

  10. 10.

    & Brighter and faster: the promise and challenge of the X-ray free-electron laser. Phys. Today 68, 26–32 (2015).

  11. 11.

    et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2009).

  12. 12.

    et al. A compact X-ray free-electron laser emitting in the sub-angstrom region. Nat. Photon. 6, 540–544 (2012).

  13. 13.

    et al. Two-stage seeded soft-X-ray free-electron laser. Nat. Photon. 7, 913–918 (2013).

  14. 14.

    et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007).

  15. 15.

    et al. Nonlinear atomic response to intense ultrashort X rays. Phys. Rev. Lett. 106, 083002 (2011).

  16. 16.

    et al. Double-core-hole spectroscopy for chemical analysis with an intense X-ray femtosecond laser. Proc. Natl Acad. Sci. USA 108, 16912–16915 (2011).

  17. 17.

    et al. Imaging charge transfer in iodomethane upon X-ray photoabsorption. Science 345, 288–291 (2014).

  18. 18.

    et al. Experimental demonstration of femtosecond two-color X-ray free-electron lasers. Phys. Rev. Lett. 110, 134801 (2013).

  19. 19.

    et al. Two-colour hard X-ray free-electron laser with wide tunability. Nat. Commun. 4, 2919 (2013).

  20. 20.

    et al. High-intensity double-pulse X-ray free-electron laser. Nat. Commun. 6, 6369 (2015).

  21. 21.

    et al. Two-colour pump-probe experiments with a twin-pulse-seed extreme ultraviolet free-electron laser. Nat. Commun. 4, 2476 (2013).

  22. 22.

    et al. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering. Nat. Commun. 7, 10343 (2016).

  23. 23.

    et al. Demonstration of single-crystal self-seeded two-color X-ray free-electron lasers. Phys. Rev. Lett. 113, 254801 (2014).

  24. 24.

    et al. Coherent control with a short-wavelength free-electron laser. Nat. Photon. 10, 176–179 (2016).

  25. 25.

    et al. Polarization control in an X-ray free-electron laser. Nat. Photon. 10, 468–472 (2016).

  26. 26.

    , & Efficient generation of short and high-power X-ray free-electron-laser pulses based on superradiance with a transversely tilted beam. Phys. Rev. ST Accel. Beams 18, 100701 (2015).

  27. 27.

    , & Generation of ultra-large-bandwidth X-ray free-electron-laser pulses with a transverse-gradient undulator. J. Synchrotron Radiat. 23, 874–879 (2016).

  28. 28.

    & Two-color operation of a free-electron laser with a tilted beam. J. Synchrotron Radiat. 23, 869–873 (2016).

  29. 29.

    & Corrugated pipe as a beam dechirper. Nucl. Instrum. Methods Phys. Res. A 690, 106–110 (2012).

  30. 30.

    et al. Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source. Phys. Rev. ST Accel. Beams 18, 010702 (2015).

  31. 31.

    et al. Experimental demonstration of energy-chirp compensation by a tunable dielectric-based structure. Phys. Rev. Lett. 112, 114801 (2014).

  32. 32.

    et al. Experimental demonstration of energy-chirp control in relativistic electron bunches using a corrugated pipe. Phys. Rev. Lett. 112, 034801 (2014).

  33. 33.

    et al. Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures. Phys. Rev. Lett. 113, 254802 (2014).

  34. 34.

    et al. Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures. Phys. Rev. Lett. 114, 114801 (2015).

  35. 35.

    et al. Commissioning of the RadiaBeam/SLAC dechirper. In Proc. 7th International Particle Accelerator Conf. 809–812 (JACoW, 2016).

  36. 36.

    , & Analytical formulas for short bunch wakes in a flat dechirper. Phys. Rev. ST Accel. Beams 19, 084401 (2016).

  37. 37.

    & Dechirper wakefields for short bunches. Nucl. Instrum. Methods Phys. Res. A 820, 156–163 (2016).

  38. 38.

    Wakefield potentials of corrugated structures. Phys. Rev. ST Accel. Beams 18, 104402 (2015).

  39. 39.

    , & LCLS-II Undulator Tolerance Analysis SLAC-109 PUB-15062 (US Department of Energy, 2012).

  40. 40.

    et al. Femtosecond and subfemtosecond X-ray pulses from a self-amplified spontaneous-emission-based free-electron laser. Phys. Rev. Lett. 92, 074801 (2004).

  41. 41.

    et al. Generating femtosecond X-ray pulses using an emittance-spoiling foil in free-electron lasers. Appl. Phys. Lett. 107, 191104 (2015).

  42. 42.

    et al. Optical shaping of X-ray free-electron lasers. Phys. Rev. Lett. 116, 254801 (2016).

  43. 43.

    et al. Multicolor operation and spectral control in a gain-modulated X-ray free-electron laser. Phys. Rev. Lett. 111, 134801 (2013).

  44. 44.

    et al. Experimental demonstration of a soft X-ray self-seeded free-electron laser. Phys. Rev. Lett. 114, 054801 (2015).

  45. 45.

    et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photon. 6, 693–698 (2012).

  46. 46.

    et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 5, 4762 (2014).

  47. 47.

    , , & Temporal profile measurements of relativistic electron bunch based on wakefield generation. Phys. Rev. Accel. Beams 19, 021304 (2016).

  48. 48.

    et al. High efficiency, high brightness X-ray free electron lasers via fresh bunch self-seeding. In Proc. 7th International Particle Accelerator Conf. 805–808 (JACoW, 2016).

Download references

Acknowledgements

We thank K. Bane and R. Iverson for useful discussions and support. This work was supported by Department of Energy contract nos DE-AC02-76SF00515 and DE-SC0012376.

Author information

Affiliations

  1. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • Alberto A. Lutman
    • , Timothy J. Maxwell
    • , James P. MacArthur
    • , Marc W. Guetg
    • , Ryan N. Coffee
    • , Yuantao Ding
    • , Zhirong Huang
    • , Agostino Marinelli
    • , Stefan Moeller
    •  & Johann C. U. Zemella
  2. Physics Department, University of Connecticut, Storrs, Connecticut 06269, USA

    • Nora Berrah
  3. Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, Calfornia 94025, USA

    • Ryan N. Coffee
    •  & Zhirong Huang
  4. Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany

    • Johann C. U. Zemella

Authors

  1. Search for Alberto A. Lutman in:

  2. Search for Timothy J. Maxwell in:

  3. Search for James P. MacArthur in:

  4. Search for Marc W. Guetg in:

  5. Search for Nora Berrah in:

  6. Search for Ryan N. Coffee in:

  7. Search for Yuantao Ding in:

  8. Search for Zhirong Huang in:

  9. Search for Agostino Marinelli in:

  10. Search for Stefan Moeller in:

  11. Search for Johann C. U. Zemella in:

Contributions

A.A.L., J.P.M and R.N.C co-wrote the manuscript with input from all co-authors. A.A.L conceived the fresh-slice schemes with the dechirper. A.A.L., T.J.M., J.P.M., M.W.G., N.B., R.N.C., Y.D., Z.H., A.M., S.M. and J.C.U.Z. participated in the experiments.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Alberto A. Lutman.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2016.201

Further reading