An ultrawide-bandwidth single-sideband modulator for terahertz frequencies

Article metrics


Wireless high-speed data communication using terahertz (THz) carrier frequencies is becoming reality with data rates beyond 100 Gbit s–1. Many of the mobile applications use internet access and require that THz wireless base stations are connected to a global network, such as the radio-over-fibre network. We present the realization of an ultrawide bandwidth THz optical single-sideband (OSSB) modulator for converting (free-space) THz signals to THz optical modulations with an increased spectral efficiency. THz OSSB will mitigate chromatic dispersion-induced propagation losses in optical fibres and support digital modulation schemes. We demonstrate THz OSSB for free-space radiation between 0.3 and 1.0 THz using a specially designed dichroic beamsplitter for signal and carrier, and a planar light-wave circuit with multimode interference structures. This arrangement of optical elements mimics the Hartley single-sideband modulator for electronics signals and accomplishes the required Hilbert transform without any frequency-dependent tuning element over an ultrawide THz spectrum.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental scheme for SSB generation.
Figure 2: Single-shot sideband spectra at 0.69 THz.
Figure 3: Visibility measurements.
Figure 4: The maximum observed visibility for OSSB generation at different THz frequencies.


  1. 1

    Cherry, S. Edholm's law of bandwidth. IEEE Spectrum 41, 58–60 (2004).

  2. 2

    Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

  3. 3

    Federici, J. & Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 107, 111101 (2010).

  4. 4

    Koenig, S. et al. Wireless sub-THz communication system with high data rate. Nat. Photon. 7, 977–981 (2010).

  5. 5

    Akyildiz, I. F., Jornet, J. M. & Han, C. Terahertz band: next frontier for wireless communications. Phys. Commun. 12, 16–32 (2014).

  6. 6

    Karl, N. J., McKinney, R. W., Monnai, Y., Mendis, R. & Mittleman, D. M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photon. 9, 717–720 (2015).

  7. 7

    Ferguson, B. & Zhang, X.-C. Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002).

  8. 8

    Yoshimizu, Y. et al. Generation of coherent sub-terahertz carrier with phase stabilization for wireless communications. J. Commun. Netw. 15, 569–575 (2013).

  9. 9

    Song, H., Tajima, T., Yaita, M. & Kagami, O. Recent progress in terahertz MMICs and packages for terahertz wireless communications at 300 GHz. In 39th Int. Conf. Infrared, Millimeter, and Terahertz Waves (eds Siegel, P. H. & Walker, C.) 1–1 (IEEE, 2014).

  10. 10

    Kallfass, I. et al. MMIC chipset for 300 GHz indoor wireless communication. In Int. Conf. Microwaves, Communications, Antennas and Electronic Systems (eds Auster, S. & Boag, A.) 1–4 (IEEE, 2015).

  11. 11

    Yang, Y., Shutler, A. & Grischkowsky, D. Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Opt. Express 19, 8830–8838 (2011).

  12. 12

    Huang, K.-C. & Wang, Z. Terahertz terabit wireless communication. IEEE Microw. Mag. 12, 108–116 (2011).

  13. 13

    Beas, J., Castanon, G., Aldaya, I., Aragón-Zavala, A. & Campuzano, G. Millimeter-wave frequency radio over fiber systems: a survey. IEEE Commun. Surv. Tut. 15, 1593–1619 (2013).

  14. 14

    Alavi, S. E. et al. Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul. Sci. Rep. 6, 19891 (2016).

  15. 15

    Wu, Q. & Zhang, X.-C. Ultrafast electro-optic field sensors. Appl. Phys. Lett. 68, 1604–1606 (1996).

  16. 16

    Sinyukov, A. M. & Hayden, L. M. Efficient electrooptic polymers for THz applications. J. Phys. Chem. B 108, 8515–8522 (2004).

  17. 17

    Smith, G. H. & Novak, D. Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects. IEEE Photon. Technol. Lett. 10, 141–143 (1998).

  18. 18

    Kitayama, K. Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation. J. Lightwave Technol. 15, 969–976 (1998).

  19. 19

    Lu, H. H., Tzeng, S. J., Chen, C. Y. & Peng, H. C. CSO/CTB performances improvement by using optical SSB filter at the receiving site. IEEE Trans. Commun. 53, 752–575 (2005).

  20. 20

    Xiao, S. & Weiner, A. M. Optical carrier-suppressed single sideband (O-CS-SSB) modulation using a hyperfine blocking filter based on a virtually imaged phased-array (VIPA). IEEE Photon. Techn. Lett. 17, 1522–1524 (2005).

  21. 21

    Li, F. & Helmy, A. S. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering. Opt. Lett. 38, 4542–4545 (2013).

  22. 22

    Zheng, J. et al. Orthogonal single-sideband signal generation using improved Sagnac-loop-based modulator. IEEE Photon. Technol. Lett. 26, 2229–2231 (2014).

  23. 23

    Smith, G. H., Novak, D. & Ahmed, Z. Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electron. Lett. 33, 74–75 (1997).

  24. 24

    Burla, M. et al. Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express 21, 25120–25147 (2013).

  25. 25

    Sima, C. et al. Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication. Opt. Express 38, 3448–3451 (2013).

  26. 26

    Sagues, M. & Loayssa, A. Orthogonally polarized optical single sideband modulation for microwave photonics processing using stimulated Brillouin scattering. Opt. Express 18, 22906–22914 (2010).

  27. 27

    Zhen'ao, L., Liang, X., Xiaoqiong, Q. & Hui, W. 30-GHz millimeter-wave carrier generation with single sideband modulation based on stimulated Brillouin scattering. J. Semicond. 33, 092004 (2011).

  28. 28

    Campillo, A. L. Orthogonally polarized single sideband modulator. Opt. Lett. 32, 3152–3154 (2007).

  29. 29

    Wang, W. T., Liu, J. G., Mei, H. K. & Zhu, N. H. Phase-coherent orthogonally polarized optical single sideband modulation with arbitrarily tunable optical carrier-to-sideband ratio. Opt. Express 24, 388–399 (2016).

  30. 30

    Hartley, R. V. Transmission of information. Bell Syst. Tech. J. 7, 535–563 (1928).

  31. 31

    Esman, R. D. & Williams, K. J. Wideband efficiency improvement of fiber optic systems by carrier subtraction. IEEE Photon. Technol. Lett. 7, 218–220 (1995).

  32. 32

    Yang, F. S., Marhic, M. E. & Kazovsky, L. G. Nonlinear crosstalk and two countermeasures in SCM-WDM optical communication systems. J. Lightwave Technol. 18, 512–520 (2000).

  33. 33

    Jansen, S., Morita, I. & Tanaka, H. Carrier-to-signal power ratio in fiber-optic SSB-OFDM transmission systems. In Inst. Electronics, Information and Communication Engineers Gen. Conf. B-10–24, 363 (Institute of Electronics, Information and Communication Engineers, 2007).

  34. 34

    Carlson, A. B., Crilly, P. B. & Rutledge, J. C. Communication Systems: an Introduction to Signals and Noise in Electrical Communication 167–169 (McGraw-Hill, 1986).

  35. 35

    Rao, D. N. & Kumar, V. N. Stability improvements for an interferometer through study of spectral interference patterns. Appl. Opt. 38, 2014–2017 (1999).

  36. 36

    Schnarrenberger, M., Zimmermann, L., Mitze, T., Bruns, J. & Petermann, K. Mach–Zehnder interferometer (MZI) with more than 20 dB extinction ratio on silicon-on-insulator. In 2nd IEEE Int. Conf. Group IV Photonics 132–133 (IEEE, 2005).

  37. 37

    Jazbinsek, M., Mutter, L. & Günter, P. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J. Sel. Top. Quantum Electron. 14, 1298–1311 (2008).

  38. 38

    Han, J., Seo, B. J., Han, Y., Jalali, B. & Fetterman, H. R. Reduction of fiber chromatic dispersion effects in fiber-wireless and photonic time-stretching system using polymer modulators. J. Lightwave Technol. 21, 1504–1509 (2003).

  39. 39

    McLaughlin, C. V. et al. Wideband 15 THz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths. Appl. Phys. Lett. 92, 151107 (2008).

  40. 40

    Kim, T.-D. et al. Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses. J. Am. Chem. Soc. 129, 488–489 (2007).

  41. 41

    Wijayanto, Y. N., Murata, H. & Okamura, Y. Electro-optic wireless millimeter-wave-lightwave signal converters using planar Yagi–Uda array antennas coupled to resonant electrodes. In Proc. 17th Opto-Electronic Communications Conf. (eds Kim, C.-M. & Chung, Y. C.) 5E1–2 (IEEE, 2012).

  42. 42

    Salamin, Y. et al. Direct conversion of free space millimeter waves to optical domain by plasmonic modulator antenna. Nano Lett. 15, 8342–8346 (2015).

  43. 43

    Zhang, X. et al. Integrated broadband bowtie antenna on transparent silica substrate. IEEE Antennas Wirel. Propag. Lett. 15, 1377–1381 (2016).

  44. 44

    Seo, M. A. et al. Terahertz field enhancement by a metallic nanoslit operating beyond the skin-depth limit. Nat. Photon. 3, 152–156 (2009).

  45. 45

    Novitsky, A., Zalkovskij, M., Malureanu, R., Jepsen, P. U. & Lavrinenko, A. V. Optical waveguide mode control by nanoslit-enhanced terahertz field. Opt. Lett. 37, 3903–3905 (2012).

  46. 46

    Park, S. J. et al. Detection of microorganisms using terahertz metamaterials. Sci. Rep. 4, 4988 (2014).

  47. 47

    Zhaunerchyk, V., Oepts, D., Jongma, R. T. & van der Zande, W. J. Influence of waveguide dispersion on short-pulse free electron laser detuning curves. Phys. Rev. ST Accel. Beams 15, 050701 (2012).

  48. 48

    Grischkowsky, D., Keiding, S., Van Exter, M. & Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 7, 2006–2015 (1990).

  49. 49

    Bauer, T., Kolb, J. S., Loffler, T., Mohler, E. & Roskos, H. G. Indium–tin–oxide-coated glass as dichroic mirror for far-infrared electromagnetic radiation. J. Appl. Phys. 92, 2210–2212 (2002).

  50. 50

    Gallot, G. & Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 16, 1204–1212 (1999).

  51. 51

    Wijnen, F. J., Berden, G. & Jongma, R. T. A simple optical spectral calibration technique for pulsed THz sources. Opt. Express 18, 26517–26524 (2010).

  52. 52

    Jamison, S. P., Berden, G., Phillips, P. J., Gillespie, W. A. & MacLeod, A. M. Upconversion of a relativistic Coulomb field terahertz pulse to the near infrared. Appl. Phys. Lett. 23, 231114 (2010).

  53. 53

    Berden, G. et al. Benchmarking of electro-optic monitors for femtosecond electron bunches. Phys. Rev. Lett. 99, 164801 (2007).

Download references


This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO). FLARE is funded via the ‘Big Facilities’ programme of NWO. The authors gratefully thank the FELIX laboratory staff for their skilled support and A. Kimel for fruitful discussions.

Author information

A.S.M., G.B. and W.J.Z. conceived and designed the experiments. A.S.M. built the experimental set-up and performed all the measurements. D.D.A., M.O. and R.T.J. operated the THz free-electron laser (FLARE), the FLARE diagnostic tools and the upconversion spectrometer. A.S.M., R.T.J. and W.J.Z. analysed the experimental data. A.S.M. and W.J.Z. wrote the manuscript with contributions from G.B. and R.T.J.

Correspondence to G. Berden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meijer, A., Berden, G., Arslanov, D. et al. An ultrawide-bandwidth single-sideband modulator for terahertz frequencies. Nature Photon 10, 740–744 (2016) doi:10.1038/nphoton.2016.182

Download citation

Further reading