Letter | Published:

Multi-photon entanglement in high dimensions

Nature Photonics volume 10, pages 248252 (2016) | Download Citation

Abstract

Forming the backbone of quantum technologies today, entanglement1,2 has been demonstrated in physical systems as diverse as photons3, ions4 and superconducting circuits5. Although steadily pushing the boundary of the number of particles entangled, these experiments have remained in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both the number of particles and dimensions are greater than two. Two photons in our state reside in a three-dimensional space, whereas the third lives in two dimensions. This asymmetric entanglement structure6 only appears in multiparticle entangled states with d > 26. Our method relies on combining two pairs of photons, high-dimensionally entangled in their orbital angular momentum7. In addition, we show how this state enables a new type of ‘layered’ quantum communication protocol. Entangled states such as these serve as a manifestation of the complex dance of correlations that can exist within quantum mechanics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 823–828 (1935).

  2. 2.

    The present situation in quantum mechanics: a translation of Schrödinger's “Cat Paradox” paper. Proc. Am. Phil. Soc. 124, 323–338 (1980).

  3. 3.

    et al. Observation of eight-photon entanglement. Nature Photon. 6, 225–228 (2012).

  4. 4.

    et al. Experimental violation of multipartite bell inequalities with trapped ions. Phys. Rev. Lett. 112, 100403 (2014).

  5. 5.

    et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

  6. 6.

    & Structure of multidimensional entanglement in multipartite systems. Phys. Rev. Lett. 110, 030501 (2013).

  7. 7.

    , , & Three-particle entanglements from two entangled pairs. Phys. Rev. Lett. 78, 3031–3034 (1997).

  8. 8.

    On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964).

  9. 9.

    , , & Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

  10. 10.

    , & in Bell‘s Theorem, Quantum Theory, and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Kluwer, 1989).

  11. 11.

    Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990).

  12. 12.

    , , , & Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 (2000).

  13. 13.

    , , & Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008).

  14. 14.

    et al. Experimental non-classicality of an indivisible quantum system. Nature 474, 490–493 (2011).

  15. 15.

    , , & Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

  16. 16.

    et al. High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015).

  17. 17.

    & Quantum imaging technologies. Riv. Nuovo Cimento 37, 273–332 (2014).

  18. 18.

    , & Twisted photons. Nature Phys. 3, 305–310 (2007).

  19. 19.

    , , , & Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nature Phys. 7, 677–680 (2011).

  20. 20.

    et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl Acad. Sci. USA 111, 6243–6247 (2014).

  21. 21.

    et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

  22. 22.

    & Schmidt number for density matrices. Phys. Rev. A 61, 040301 (2000).

  23. 23.

    , & Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems. Phys. Rev. A 88, 042328 (2013).

  24. 24.

    , , & Inequalities for the ranks of multipartite quantum states. Linear Algebra Appl. 452, 153–171 (2014).

  25. 25.

    , , & Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901 (2002).

  26. 26.

    , & Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

  27. 27.

    Interference of Photons from Independent Sources PhD thesis, Univ. Vienna (2009).

  28. 28.

    et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nature Commun. 5, 4502 (2014).

  29. 29.

    , & Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).

  30. 30.

    , , & Efficient separation of the orbital angular momentum eigenstates of light. Nature Commun. 4, 2781 (2013).

  31. 31.

    , , , & Automated search for new quantum experiments. Phys. Rev. Lett. Preprint at (2015)

  32. 32.

    , & Spin-orbit mode selection with a modified Sagnac interferometer. J. Opt. Soc. Am. B 30, 1623–1626 (2013).

  33. 33.

    et al. Crossed-crystal scheme for femtosecond-pulsed entangled photon generation in periodically poled potassium titanyl phosphate. Phys. Rev. A 89, 042324 (2014).

  34. 34.

    et al. Robust interferometer for the routing of light beams carrying orbital angular momentum. New J. Phys. 13, 093014 (2011).

  35. 35.

    , , & Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

  36. 36.

    et al. Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement. J. Opt. Soc. Am. B 31, A20–A23 (2014).

  37. 37.

    , , , & Reconstructing high-dimensional two-photon entangled states via compressive sensing. Sci. Rep. 4, 6542 (2014).

  38. 38.

    et al. Observation of one-way Einstein–Podolsky-Rosen steering. Nature Photon. 6, 596–599 (2012).

Download references

Acknowledgements

We thank T. Scheidl, M. Tillman, J. Handsteiner, R. Lapkiewicz, and G.B. Lemos for helpful discussions. M.M. acknowledges funding from the European Commission through a Marie Curie fellowship (OAMGHZ). M.H. acknowledges funding from the Juan de la Cierva fellowship (JCI 2012-14155), the European Commission (STREP ‘RAQUEL’) and the Spanish MINECO Project No. FIS2013-40627-P, the Generalitat de Catalunya CIRIT Project No. 2014 SGR 966, the Swiss National Science Foundation (AMBIZIONE PZ00P2_161351), and fruitful discussions at LIQUID. This project was supported by the Austrian Academy of Sciences (ÖAW), the European Research Council (SIQS Grant No. 600645 EU-FP7-ICT), the Austrian Science Fund (FWF) with SFB F40 (FOQUS).

Author information

Author notes

    • Robert Fickler

    Present address: Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, Ottawa K1N 6N5, Canada

Affiliations

  1. Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information (IQOQI), Boltzmanngasse 3, A-1090 Vienna, Austria

    • Mehul Malik
    • , Manuel Erhard
    • , Mario Krenn
    • , Robert Fickler
    •  & Anton Zeilinger
  2. Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria

    • Mehul Malik
    • , Manuel Erhard
    • , Mario Krenn
    • , Robert Fickler
    •  & Anton Zeilinger
  3. Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

    • Marcus Huber
  4. ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain

    • Marcus Huber
  5. Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland

    • Marcus Huber

Authors

  1. Search for Mehul Malik in:

  2. Search for Manuel Erhard in:

  3. Search for Marcus Huber in:

  4. Search for Mario Krenn in:

  5. Search for Robert Fickler in:

  6. Search for Anton Zeilinger in:

Contributions

M.M. devised the concept of the experiment, with assistance from M.K. and R.F. M.M and M.E. performed the experiment. M.H. developed the high-dimensional entanglement witness. M.M., M.E., M.K. and M.H. analysed the data. M.M. and M.H. developed the layered quantum communication protocol. A.Z. initiated the research and supervised the project. M.M. wrote the manuscript with contributions from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Mehul Malik.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2016.12

Further reading