Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large Brillouin amplification in silicon

Abstract

Both Kerr and Raman nonlinearities are radically enhanced by tight optical-mode confinement in nanoscale silicon waveguides1,2,3,4. Counterintuitively, Brillouin nonlinearities—originating from coupling between photons and acoustic phonons—are exceedingly weak in these same nonlinear waveguides5. Strong Brillouin interactions have only recently been realized in a new class of optomechanical structures that control the interaction between guided photons and phonons5,6,7. Despite these major advances, appreciable Brillouin-based optical amplification has yet to be observed in silicon. Using a membrane-suspended waveguide, we report large Brillouin amplification in silicon for the first time, reaching levels greater than 5 dB for modest pump powers, and demonstrate a record low (5 mW) threshold for net amplification. This work represents an important step towards the realization of high-performance Brillouin lasers and amplifiers in silicon.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hybrid photonic–phononic silicon waveguide.
Figure 2: Experimental results showing the Brillouin gain and net on-chip amplification.
Figure 3: Set-up and results of an energy-transfer (two-tone) experiment.

References

  1. Rong, H. et al. Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide. Appl. Phys. Lett. 85, 2196–2198 (2004).

    ADS  Article  Google Scholar 

  2. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    ADS  Article  Google Scholar 

  3. Jalali, B. et al. Prospects for silicon mid-IR Raman lasers. IEEE J. Sel. Top. Quantum Electron. 12, 1618–1627 (2006).

    ADS  Article  Google Scholar 

  4. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    ADS  Article  Google Scholar 

  5. Rakich, P. T., Reinke, C., Camacho, R., Davids, P. & Wang, Z. Giant enhancement of stimulated Brillouin scattering in the subwavelength limit. Phys. Rev. X 2, 011008 (2012).

    Google Scholar 

  6. Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nature Commun. 4, 1944 (2013).

    ADS  Article  Google Scholar 

  7. Van Laer, R., Kuyken, B., Van Thourhout, D. & Baets, R. Interaction between light and highly confined hypersound in a silicon photonic nanowire. Nature Photon. 9, 199–203 (2015).

    ADS  Article  Google Scholar 

  8. Vidal, B., Piqueras, M. A. & Martí, J. Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering. Opt. Lett. 32, 23–25 (2007).

    ADS  Article  Google Scholar 

  9. Li, M. et al. Harnessing optical forces in integrated photonic circuits. Nature 456, 480–484 (2008).

    ADS  Article  Google Scholar 

  10. Zhang, W. & Minasian, R. Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett. 24, 1182–1184 (2012).

    ADS  Article  Google Scholar 

  11. Pant, R. et al. On-chip stimulated Brillouin scattering for microwave signal processing and generation. Laser Photon. Rev. 8, 653–666 (2014).

    ADS  Article  Google Scholar 

  12. Shin, H. et al. Control of coherent information via on-chip photonic–phononic emitter–receivers. Nature Commun. 6, 6427 (2015).

    ADS  Article  Google Scholar 

  13. Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nature Commun. 4, 2097 (2013).

    ADS  Article  Google Scholar 

  14. Marpaung, D. et al. Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity. Optica 2, 76–83 (2015).

    ADS  Article  Google Scholar 

  15. Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. St. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Phys. 5, 276–280 (2009).

    ADS  Article  Google Scholar 

  16. Braje, D., Hollberg, L. & Diddams, S. Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser. Phys. Rev. Lett. 102, 193902 (2009).

    ADS  Article  Google Scholar 

  17. Olsson, N. & van der Ziel, J. Fibre Brillouin amplifier with electronically controlled bandwidth. Electron. Lett. 22, 488–490 (1986).

    Article  Google Scholar 

  18. Abedin, K. S. et al. Single-frequency Brillouin distributed feedback fiber laser. Opt. Lett. 37, 605–607 (2012).

    ADS  Article  Google Scholar 

  19. Li, J., Lee, H. & Vahala, K. J. Low-noise Brillouin laser on a chip at 1064 nm. Opt. Lett. 39, 287–290 (2014).

    ADS  Article  Google Scholar 

  20. Gao, F. et al. On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation. Opt. Express 21, 8605–8613 (2013).

    ADS  Article  Google Scholar 

  21. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91–94 (2009).

    ADS  Article  Google Scholar 

  22. Kang, M. S., Butsch, A. & Russell, P. St. J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photon. 5, 549–553 (2011).

    ADS  Article  Google Scholar 

  23. Huang, X. & Fan, S. Complete all-optical silica fiber isolator via stimulated Brillouin scattering. J. Lightwave Technol. 29, 2267–2275 (2011).

    ADS  Article  Google Scholar 

  24. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nature Phys. 11, 275–280 (2015).

    ADS  Article  Google Scholar 

  25. Yao, X. Brillouin selective sideband amplification of microwave photonic signals. IEEE Photon. Technol. Lett. 10, 138–140 (1998).

    ADS  Article  Google Scholar 

  26. Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    ADS  Article  Google Scholar 

  27. Loayssa, A., Benito, D. & Garde, M. J. Optical carrier Brillouin processing of microwave photonic signals. Opt. Lett. 25, 1234–1236 (2000).

    ADS  Article  Google Scholar 

  28. Laer, R. V., Bazin, A., Kuyken, B., Baets, R. & Thourhout, D. V. Net on-chip Brillouin gain based on suspended silicon nanowires. New J. Phys. 17, 115005 (2015).

    Article  Google Scholar 

  29. Wolff, C., Laer, R. V., Steel, M. J., Eggleton, B. J. & Poulton, C. G. Brillouin resonance broadening due to structural variations in nanoscale waveguides. New J. Phys. 18, 025006 (2016).

    ADS  Article  Google Scholar 

  30. Wolff, C., Gutsche, P., Steel, M. J., Eggleton, B. J. & Poulton, C. G. Power limits and a figure of merit for stimulated Brillouin scattering in the presence of third and fifth order loss. Opt. Express 23, 26628–26638 (2015).

    ADS  Article  Google Scholar 

  31. Agrawal, G. P. Nonlinear Fiber Optics (Academic, 2007).

    MATH  Google Scholar 

  32. Barwicz, T. & Haus, H. A. Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. J. Lightwave Technol. 23, 2719 (2005).

    ADS  Article  Google Scholar 

  33. Dong, P. et al. Low loss shallow-ridge silicon waveguides. Opt. Express 18, 14474–14479 (2010).

    ADS  Article  Google Scholar 

  34. Claps, R., Raghunathan, V., Dimitropoulos, D. & Jalali, B. Influence of nonlinear absorption on Raman amplification in silicon waveguides. Opt. Express 12, 2774–2780 (2004).

    ADS  Article  Google Scholar 

  35. Mathlouthi, W., Rong, H. & Paniccia, M. Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides. Opt. Express 16, 16735–16745 (2008).

    ADS  Article  Google Scholar 

  36. Gajda, A. et al. Highly efficient CW parametric conversion at 1550 nm in SOI waveguides by reverse biased p-i-n junction. Opt. Express 20, 13100–13107 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Primary support for this work was provided by the MesoDynamic Architectures programme at DARPA under the direction of D. Green. This work was supported in part by the Packard Fellowship for Science and Engineering. H.S. acknowledges support from new faculty startup funding at POSTECH. We thank P. Kharel for technical discussions involving phononic systems and nonlinear interactions, and M. Rooks and M. Power for assistance with process development. We are grateful to R. Behunin, W. Renninger and W.P. Rakich for careful reading and critique of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

E.A.K. and H.S. fabricated the waveguide devices. P.T.R., H.S. and E.A.K. developed multiphysics simulations for and designed the devices. E.A.K. and H.S. conducted experiments with the assistance of P.T.R. P.T.R., H.S. and E.A.K. developed analytical models to interpret measured data. All authors contributed to the writing of this paper.

Corresponding author

Correspondence to Peter T. Rakich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6239 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kittlaus, E., Shin, H. & Rakich, P. Large Brillouin amplification in silicon. Nature Photon 10, 463–467 (2016). https://doi.org/10.1038/nphoton.2016.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2016.112

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing