Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers


Multi-cavity photonic systems, also known as photonic molecules, exhibit multi-well potentials that may prove useful for advanced quantum and nonlinear optics1,2,3,4. A key phenomenon arising in double-well potentials is the spontaneous breaking of inversion symmetry, with a transition to two localized states in the wells, which are mirror images of each other. Although a few theoretical studies have addressed mirror-symmetry breaking in micro- and nanophotonic systems5,6,7, no experimental evidence has been reported to date. Here, we demonstrate spontaneous mirror-symmetry breaking through a pitchfork bifurcation in a photonic molecule composed of two coupled photonic-crystal nanolasers. The coexistence of localized states is shown by switching them with short pulses. This offers exciting prospects for the realization of ultra-compact, integrated, scalable optical flip-flops. Analysis suggests that such symmetry breaking should be possible with a small number of intracavity photons and is thus suitable for quantum correlation devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Photonic molecule
Figure 2: Laser emission of coupled nanocavities
Figure 3: Time-domain measurements and pitchfork bifurcation
Figure 4: Coexistence of broken parity states


  1. 1

    Abbarchi, M. et al. Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons. Nature Phys. 9, 275–279 (2013).

    ADS  Article  Google Scholar 

  2. 2

    Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Gerace, D., Türeci, H. E., Imamoglu, A., Giovannetti, V. & Fazio, R. The quantum-optical Josephson interferometer. Nature Phys. 5, 281–284 (2009).

    ADS  Article  Google Scholar 

  4. 4

    Liew, T. C. H. & Savona, V. Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Rodrigues, A., Kevrekidis, P., Cuevas, J., Carretero-González, R. & Frantzeskakis, D. in Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations (ed. Malomed, B. A.) 509–529 (Springer, 2013).

    MATH  Google Scholar 

  6. 6

    Maes, B. et al. Switching through symmetry breaking in coupled nonlinear micro-cavities. Opt. Express 14, 10678–10683 (2006).

    ADS  Article  Google Scholar 

  7. 7

    Bulgakov, E. N. & Sadreev, A. F. Symmetry breaking in photonic crystal waveguide coupled with the dipole modes of a nonlinear optical cavity. J. Opt. Soc. Am. B 29, 2924–2928 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Golubitsky, M., Schaeffer, D. G. & Stewart, I. Singularities and Groups in Bifurcation Theory Vol. 2 (Springer, 1988).

    Book  Google Scholar 

  9. 9

    Endres, M. et al. The ‘Higgs’ amplitude mode at the two-dimensional superfluid/Mott insulator transition. Nature 487, 454–458 (2012).

    ADS  Article  Google Scholar 

  10. 10

    Zibold, T., Nicklas, E., Gross, C. & Oberthaler, M. K. Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105, 204101 (2010).

    ADS  Article  Google Scholar 

  11. 11

    Liu, M., Powell, D. A., Shadrivov, I. V., Lapine, M. & Kivshar, Y. S. Spontaneous chiral symmetry breaking in metamaterials. Nature Commun. 5, 4441 (2014).

    ADS  Article  Google Scholar 

  12. 12

    Green, C., Mindlin, G. B., D'Angelo, E. J., Solari, H. G. & Tredicce, J. R. Spontaneous symmetry breaking in a laser: the experimental side. Phys. Rev. Lett. 65, 3124–3127 (1990).

    ADS  Article  Google Scholar 

  13. 13

    Kevrekidis, P. G., Chen, Z., Malomed, B. A., Frantzeskakis, D. J. & Weinstein, M. I. Spontaneous symmetry breaking in photonic lattices: theory and experiment. Phys. Lett. A 340, 275–280 (2005).

    ADS  Article  Google Scholar 

  14. 14

    Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    ADS  Article  Google Scholar 

  15. 15

    Jona-Lasinio, G., Presilla, C. & Toninelli, C. Interaction induced localization in a gas of pyramidal molecules. Phys. Rev. Lett. 88, 123001 (2002).

    ADS  Article  Google Scholar 

  16. 16

    Malomed, B. A. Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations (Springer, 2013).

    Book  Google Scholar 

  17. 17

    Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photon. 4, 182–187 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Nozaki, K. et al. Ultralow-power all-optical ram based on nanocavities. Nature Photon. 6, 248–252 (2012).

    ADS  Article  Google Scholar 

  19. 19

    Coullet, P. & Vandenberghe, N. Chaotic self-trapping of a weakly irreversible double bose condensate. Phys. Rev. E 64, 025202 (2001).

    ADS  Article  Google Scholar 

  20. 20

    Akahane, Y., Asano, T., Song, B.-S. & Noda, S. High-q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    ADS  Article  Google Scholar 

  21. 21

    Portalupi, S. L. et al. Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor. Opt. Express 18, 16064–16073 (2010).

    ADS  Article  Google Scholar 

  22. 22

    Tran, N.-V.-Q., Combrié, S. & De Rossi, A. Directive emission from high-q photonic crystal cavities through band folding. Phys. Rev. B 79, 041101 (2009).

    ADS  Article  Google Scholar 

  23. 23

    Haddadi, S. et al. Photonic crystal coupled cavities with increased beaming and free space coupling efficiency. Appl. Phys. Lett. 102, 011107 (2013).

    ADS  Article  Google Scholar 

  24. 24

    Caselli, N., Intonti, F., Riboli, F. & Gurioli, M. Engineering the mode parity of the ground state in photonic crystal molecules. Opt. Express 22, 4953–4959 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Haddadi, S. et al. Photonic molecules: tailoring the coupling strength and sign. Opt. Express 22, 12359–12368 (2014).

    ADS  Article  Google Scholar 

  26. 26

    Chalcraft, A. R. A. et al. Mode structure of coupled L3 photonic crystal cavities. Opt. Express 19, 5670–5675 (2011).

    ADS  Article  Google Scholar 

  27. 27

    Caselli, N. et al. Antibonding ground state in photonic crystal molecules. Phys. Rev. B 86, 035133 (2012).

    ADS  Article  Google Scholar 

  28. 28

    Ishii, S., Nakagawa, A. & Baba, T. Modal characteristics and bistability in twin microdisk photonic molecule lasers. IEEE J. Sel . Top. Quantum Electron. 12, 71–77 (2006).

    Article  Google Scholar 

  29. 29

    Chen, C.-H. et al. All-optical memory based on injection-locking bistability in photonic crystal lasers. Opt. Express 19, 3387–3395 (2011).

    ADS  Article  Google Scholar 

  30. 30

    Ruter, C. E. et al. Observation of parity-time symmetry in optics. Nature Phys. 6, 192–195 (2010).

    ADS  Article  Google Scholar 

  31. 31

    Shambat, G. et al. Electrically driven photonic crystal nanocavity devices. IEEE J. Sel . Top. Quantum Electron. 18, 1700–1710 (2012).

    Article  Google Scholar 

Download references


The authors thank A. Amo, J. Bloch, S. Barbay, J. Dudley, N. Treps, J. Tredicce, K. Bencheikh and A. Aspect for comments. This work was supported by the Centre National de la Recherche Scientifique, the Agence Nationale de la Recherche (ANR) (ANR-12-BS04-0011) and the RENATECH network.

Author information




A.L. and A.M.Y. conceived and designed the experiments. P.H. and S.H. performed the experiments. F.R., G.B. and I.S. fabricated the samples. P.M. provided technical assistance. A.M.Y. performed theoretical analysis and numerical simulations. A.L., P.H. and A.M.Y. co-wrote the paper.

Corresponding author

Correspondence to Alejandro M. Yacomotti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2209 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamel, P., Haddadi, S., Raineri, F. et al. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers. Nature Photon 9, 311–315 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing