Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields


Realization of a quantum interface between stationary and flying qubits is a requirement for long-distance quantum communication and distributed quantum computation. The prospects for integrating many qubits on a single chip render solid-state spins promising candidates for stationary qubits. Certain solid-state systems, including quantum dots and nitrogen–vacancy centres in diamond, exhibit spin-state-dependent optical transitions, allowing for fast initialization, manipulation and measurement of the spins using laser excitation. Recent progress has brought spin photonics research in these materials into the quantum realm, allowing the demonstration of spin–photon entanglement, which in turn has enabled distant spin entanglement as well as quantum teleportation. Advances in the fabrication of photonic nanostructures hosting spin qubits suggest that chips incorporating a high-efficiency spin–photon interface in a quantum photonic network are within reach.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Quantum dot spin initialization, detection and manipulation.
Figure 2: Quantum dot spin–photon interface.
Figure 3: Optical detection and spin manipulation of NV centres.
Figure 4: The optical interface of the NV centre.
Figure 5: Spins in silicon carbide and rare-earth-doped crystals.
Figure 6: Spin photonics networks.


  1. 1

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    ADS  Google Scholar 

  2. 2

    Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

    Article  ADS  Google Scholar 

  3. 3

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    ADS  Google Scholar 

  4. 4

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

    Article  ADS  Google Scholar 

  5. 5

    De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  ADS  Google Scholar 

  6. 6

    Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  ADS  Google Scholar 

  7. 7

    Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

    Article  ADS  Google Scholar 

  8. 8

    Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nature Commun. 4, 2744 (2013).

    Article  ADS  Google Scholar 

  9. 9

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article  ADS  Google Scholar 

  10. 10

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. 11

    Jones, N. C. et al. Layered Architecture for Quantum Computing. Phys. Rev. X 2, 031007 (2012).

    Google Scholar 

  12. 12

    Childress, L. & Hanson, R. Diamond NV centers for quantum computing and quantum networks. MRS Bull. 38, 134–138 (2013).

    Article  Google Scholar 

  13. 13

    Yao, N. Y. et al. Scalable architecture for a room temperature solid-state quantum information processor. Nature Commun. 3, 800 (2012).

    Article  ADS  Google Scholar 

  14. 14

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  15. 15

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  16. 16

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  17. 17

    Munro, W. J., Stephens, A. M., Devitt, S. J., Harrison, K. A. & Nemoto, K. Quantum communication without the necessity of quantum memories. Nature Photon. 6, 777–781 (2012).

    Article  ADS  Google Scholar 

  18. 18

    Hanson, R. et al. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

    Article  ADS  Google Scholar 

  19. 19

    Marzin, J. Y., Gerard, J. M., Izrael, A., Barrier, D. & Bastard, G. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994).

    Article  ADS  Google Scholar 

  20. 20

    Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P. & Petroff, P. M. Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Lett. 73, 2252–2255 (1994).

    Article  ADS  Google Scholar 

  21. 21

    Kiravittaya, S., Rastelli, A. & Schmidt, O. G. Advanced quantum dot configurations. Rep. Prog. Phys. 72, 046502 (2009).

    Article  ADS  Google Scholar 

  22. 22

    Wei, Y. J. et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett. 14, 6515–6519 (2014).

    Article  ADS  Google Scholar 

  23. 23

    Flagg, E. B. et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).

    Article  ADS  Google Scholar 

  24. 24

    Patel, R. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).

    Article  ADS  Google Scholar 

  25. 25

    He, Y. et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013).

    Article  ADS  Google Scholar 

  26. 26

    Matthiesen, C. et al. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

    Article  ADS  Google Scholar 

  27. 27

    Xu, X. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

    Article  ADS  Google Scholar 

  28. 28

    Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

    Article  ADS  Google Scholar 

  29. 29

    Delteil, A. et al. Observation of quantum jumps of a single quantum dot spin using sub-microsecond single-shot optical readout. Phys. Rev. Lett. 112, 116802 (2014).

    Article  ADS  Google Scholar 

  30. 30

    Carter, S. G. et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nature Photon. 7, 329334 (2013).

    Article  Google Scholar 

  31. 31

    Puri, S., McMahon, P. L. & Yamamoto, Y. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons. Phys. Rev. B 90, 155421 (2014).

    Article  ADS  Google Scholar 

  32. 32

    Economou, S. E. et al. Theory of fast optical spin rotation in a quantum dot based on geometric phases and trapped states. Phys. Rev. Lett. 99, 217401 (2007).

    Article  ADS  Google Scholar 

  33. 33

    Kim, E. D. et al. Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. Phys. Rev. Lett. 104, 167401 (2010).

    Article  ADS  Google Scholar 

  34. 34

    Ramsay, A. J. A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots. Semicond. Sci. Technol. 25, 103001 (2010).

    Article  ADS  Google Scholar 

  35. 35

    Berezovsky, J. et al. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  36. 36

    Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  37. 37

    Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008).

    ADS  Google Scholar 

  38. 38

    Mikkelsen, M. H. et al. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys. 3, 770–773 (2007).

    Article  ADS  Google Scholar 

  39. 39

    Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

    Article  ADS  Google Scholar 

  40. 40

    Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

    ADS  Google Scholar 

  41. 41

    Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

    Article  ADS  Google Scholar 

  42. 42

    De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

    Article  ADS  Google Scholar 

  43. 43

    Greilich, A. et al. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).

    Article  ADS  Google Scholar 

  44. 44

    Weiss, K. M. et al. Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012).

    Article  ADS  Google Scholar 

  45. 45

    De Greve, K. et al. Complete tomography of a high-fidelity solid-state entangled spin photon qubit pair. Nature Commun. 4, 2228 (2013).

    Article  ADS  Google Scholar 

  46. 46

    Marcikic, I. et al. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004).

    Article  ADS  Google Scholar 

  47. 47

    Duan, L. M. et al. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits. Phys. Rev. A 73, 062324 (2006).

    Article  ADS  Google Scholar 

  48. 48

    Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

    Article  ADS  Google Scholar 

  49. 49

    Ramsay, A. J. et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).

    Article  ADS  Google Scholar 

  50. 50

    Godden, T. M. et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. Phys. Rev. Lett. 108, 017402 (2012).

    Article  ADS  Google Scholar 

  51. 51

    Fischer, J. et al. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    Article  ADS  Google Scholar 

  52. 52

    Fallahi, P., Yilmaz, S. T. & Imamoglu, A. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010).

    Article  ADS  Google Scholar 

  53. 53

    Chekhovich, E. A. et al. Direct measurement of the hole-nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).

    Article  ADS  Google Scholar 

  54. 54

    Urbaszek, B. et al. Nuclear spin physics in quantum dots: An optical investigation. Rev. Mod. Phys 85, 79–133 (2013).

    Article  ADS  Google Scholar 

  55. 55

    Kim, D. et al. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2010).

    Article  ADS  Google Scholar 

  56. 56

    Fuchs, G. D. et al. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

    Article  ADS  Google Scholar 

  57. 57

    Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

    Article  ADS  Google Scholar 

  58. 58

    De Lange, G., Wang, Z. H., Riste, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

    Article  ADS  Google Scholar 

  59. 59

    Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).

    Article  ADS  Google Scholar 

  60. 60

    Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011).

    Article  ADS  Google Scholar 

  61. 61

    Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nature Commun. 4, 1743 (2013).

    Article  ADS  Google Scholar 

  62. 62

    Hanson, R. et al. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    Article  ADS  Google Scholar 

  63. 63

    Mizuochi, N. et al. Coherence of single spins coupled to a nuclear spin bath of varying density. Phys. Rev. B 80, 041201 (2009).

    Article  ADS  Google Scholar 

  64. 64

    Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

    Article  ADS  Google Scholar 

  65. 65

    Kolkowitz, S., Bennett, S. D., Unterreithmeier, Q. P. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

    Article  ADS  Google Scholar 

  66. 66

    Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article  ADS  Google Scholar 

  67. 67

    Zhao, N. et al. Sensing single remote nuclear spins. Nature Nanotech. 7, 657–662 (2012).

    Article  ADS  Google Scholar 

  68. 68

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

    Article  ADS  Google Scholar 

  69. 69

    Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    Article  ADS  Google Scholar 

  70. 70

    Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nature Nanotech. 9, 171–176 (2014).

    Article  ADS  Google Scholar 

  71. 71

    Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

    Article  ADS  Google Scholar 

  72. 72

    Chu, Y. et al. Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett. 14, 1982–1986 (2014).

    Article  ADS  Google Scholar 

  73. 73

    Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013).

    Article  ADS  Google Scholar 

  74. 74

    Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

    Article  ADS  Google Scholar 

  75. 75

    Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  Google Scholar 

  76. 76

    Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

    Article  ADS  Google Scholar 

  77. 77

    Dréau, A., Spinicelli, P., Maze, J. R., Roch, J. F. & Jacques, V. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions. Phys. Rev. Lett. 110, 60502 (2013).

    Article  ADS  Google Scholar 

  78. 78

    Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nature Phys. 9, 29–33 (2013).

    Article  ADS  Google Scholar 

  79. 79

    Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006).

    Article  ADS  Google Scholar 

  80. 80

    Batalov, A. et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. Phys. Rev. Lett. 100, 77401 (2008).

    Article  ADS  Google Scholar 

  81. 81

    Robledo, L., Bernien, H., van Weperen, I. & Hanson, R. Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. Phys. Rev. Lett. 105, 177403 (2010).

    Article  ADS  Google Scholar 

  82. 82

    Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

    Article  ADS  Google Scholar 

  83. 83

    Yale, C. G. et al. All-optical control of a solid-state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

    Article  ADS  Google Scholar 

  84. 84

    Golter, D. A. & Wang, H. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett. 112, 116403 (2014).

    Article  ADS  Google Scholar 

  85. 85

    Togan, E., Chu, Y., Imamoglu, A. & Lukin, M. D. Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit. Nature 478, 497–501 (2011).

    Article  ADS  Google Scholar 

  86. 86

    Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011).

    Article  ADS  Google Scholar 

  87. 87

    Faraon, A., Barclay, P. E., Santori, C., Fu, K-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

    Article  ADS  Google Scholar 

  88. 88

    Loncar, M. & Faraon, A. Quantum photonic networks in diamond. MRS Bull. 38, 144–148 (2013).

    Article  Google Scholar 

  89. 89

    Faraon, A. et al. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

    Article  ADS  Google Scholar 

  90. 90

    Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

    Article  ADS  Google Scholar 

  91. 91

    Jiang, L. et al. Coherence of an optically illuminated single nuclear spin qubit. Phys. Rev. Lett. 100, 73001 (2008).

    Article  ADS  Google Scholar 

  92. 92

    Blok, M. S. et al. Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nature Phys. 10, 189–193 (2014).

    Article  ADS  Google Scholar 

  93. 93

    Aharonovich, I. et al. Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011).

    Article  ADS  Google Scholar 

  94. 94

    Kennard, J. E. et al. On-chip manipulation of single photons from a diamond defect. Phys. Rev. Lett. 111, 213603 (2013).

    Article  ADS  Google Scholar 

  95. 95

    Müller, T. et al. Optical signatures of silicon-vacancy spins in diamond. Nature Commun. 5, 3328 (2014).

    Article  ADS  Google Scholar 

  96. 96

    Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

    Article  ADS  Google Scholar 

  97. 97

    Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    Article  ADS  Google Scholar 

  98. 98

    Koehl, W. F. et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

    Article  ADS  Google Scholar 

  99. 99

    Soltamov, V. A., Soltamova, A. A., Baranov, P. G. & Proskuryakov, I. I. Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys. Rev. Lett. 108, 226402 (2012).

    Article  ADS  Google Scholar 

  100. 100

    Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nature Commun. 4, 1819 (2013).

    Article  ADS  Google Scholar 

  101. 101

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond-coherence times. Nature Mater. 14, 160–163 (2015).

    Article  ADS  Google Scholar 

  102. 102

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater. 14, 164–168 (2015).

    Article  ADS  Google Scholar 

  103. 103

    Calusine, G., Politi, A. & Awschalom, D. D. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 105, 011123 (2014).

    Article  ADS  Google Scholar 

  104. 104

    Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

    Article  ADS  Google Scholar 

  105. 105

    Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nature Commun. 3, 1029 (2012).

    Article  ADS  Google Scholar 

  106. 106

    Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nature Commun. 5, 3627 (2014).

    Article  ADS  Google Scholar 

  107. 107

    Siyushev, P. et al. Coherent properties of single rare-earth spin qubits. Nature Commun. 5, 3895 (2014).

    Article  ADS  Google Scholar 

  108. 108

    Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

    Article  ADS  Google Scholar 

  109. 109

    Munsch, M. et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013).

    Article  ADS  Google Scholar 

  110. 110

    Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nano. 5, 195–199 (2010).

    Article  ADS  Google Scholar 

  111. 111

    Santori, C. et al. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  112. 112

    Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nature Commun. 4, 1425 (2013).

    Article  ADS  Google Scholar 

  113. 113

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  114. 114

    Arnold, C. et al. Macroscopic rotation of photon polarization induced by a single spin. Nature Commun. 6, 6236 (2015).

    Article  ADS  Google Scholar 

  115. 115

    Leuenberger, M. N. Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots. Phys. Rev. B 73, 075312 (2006).

    Article  ADS  Google Scholar 

  116. 116

    Hu, C. Y. et al. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008).

    Article  ADS  Google Scholar 

  117. 117

    Bonato, C. et al. CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010).

    Article  ADS  Google Scholar 

  118. 118

    Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    Article  ADS  Google Scholar 

  119. 119

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  120. 120

    Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–869 (2007).

    Article  ADS  Google Scholar 

  121. 121

    Pinotsi, D., Fallahi, P., Miguel-Sanchez, J. & Imamoglu, A. Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures. IEEE J. Quantum Electron. 47, 1371–1374 (2011).

    Article  ADS  Google Scholar 

  122. 122

    Miguel-Sanchez, J. et al. Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity. New J. Phys. 15, 045002 (2013).

    Article  ADS  Google Scholar 

  123. 123

    Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

    Article  ADS  Google Scholar 

  124. 124

    Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nature Photon. 7, 210–214 (2013).

    Article  ADS  Google Scholar 

  125. 125

    Reithmaier, G. et al. On-chip generation, routing and detection of quantum light. Preprint at (2014).

  126. 126

    Fry, P. W. et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys. Rev. Lett. 84, 733–736 (2000).

    Article  ADS  Google Scholar 

Download references


We thank Lily Childress, Yves Delley, Aymeric Delteil, Bas Hensen, Martin Kroner, Wolfgang Pfaff, Tim Taminiau, Emre Togan and Sun Zhe for many useful discussions. We acknowledge support from the NCCR Quantum Science and Technology (NCCR QSIT), the research instrument of the Swiss National Science Foundation (SNS) under grant no. 200021-140818, the Dutch Organization for Fundamental Research on Matter (FOM), the EU S3NANO program and the European Research Council through a Starting Grant.

Author information



Corresponding author

Correspondence to A. Imamoglu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Imamoglu, A., Bernien, H. et al. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nature Photon 9, 363–373 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing