Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields

Article metrics

Abstract

Realization of a quantum interface between stationary and flying qubits is a requirement for long-distance quantum communication and distributed quantum computation. The prospects for integrating many qubits on a single chip render solid-state spins promising candidates for stationary qubits. Certain solid-state systems, including quantum dots and nitrogen–vacancy centres in diamond, exhibit spin-state-dependent optical transitions, allowing for fast initialization, manipulation and measurement of the spins using laser excitation. Recent progress has brought spin photonics research in these materials into the quantum realm, allowing the demonstration of spin–photon entanglement, which in turn has enabled distant spin entanglement as well as quantum teleportation. Advances in the fabrication of photonic nanostructures hosting spin qubits suggest that chips incorporating a high-efficiency spin–photon interface in a quantum photonic network are within reach.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Quantum dot spin initialization, detection and manipulation.
Figure 2: Quantum dot spin–photon interface.
Figure 3: Optical detection and spin manipulation of NV centres.
Figure 4: The optical interface of the NV centre.
Figure 5: Spins in silicon carbide and rare-earth-doped crystals.
Figure 6: Spin photonics networks.

References

  1. 1

    Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

  2. 2

    Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999).

  3. 3

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

  4. 4

    Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010).

  5. 5

    De Greve, K. et al. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

  6. 6

    Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

  7. 7

    Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

  8. 8

    Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nature Commun. 4, 2744 (2013).

  9. 9

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

  10. 10

    Pfaff, W. et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science 345, 532–535 (2014).

  11. 11

    Jones, N. C. et al. Layered Architecture for Quantum Computing. Phys. Rev. X 2, 031007 (2012).

  12. 12

    Childress, L. & Hanson, R. Diamond NV centers for quantum computing and quantum networks. MRS Bull. 38, 134–138 (2013).

  13. 13

    Yao, N. Y. et al. Scalable architecture for a room temperature solid-state quantum information processor. Nature Commun. 3, 800 (2012).

  14. 14

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

  15. 15

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  16. 16

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  17. 17

    Munro, W. J., Stephens, A. M., Devitt, S. J., Harrison, K. A. & Nemoto, K. Quantum communication without the necessity of quantum memories. Nature Photon. 6, 777–781 (2012).

  18. 18

    Hanson, R. et al. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007).

  19. 19

    Marzin, J. Y., Gerard, J. M., Izrael, A., Barrier, D. & Bastard, G. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994).

  20. 20

    Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P. & Petroff, P. M. Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Lett. 73, 2252–2255 (1994).

  21. 21

    Kiravittaya, S., Rastelli, A. & Schmidt, O. G. Advanced quantum dot configurations. Rep. Prog. Phys. 72, 046502 (2009).

  22. 22

    Wei, Y. J. et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett. 14, 6515–6519 (2014).

  23. 23

    Flagg, E. B. et al. Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010).

  24. 24

    Patel, R. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nature Photon. 4, 632–635 (2010).

  25. 25

    He, Y. et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013).

  26. 26

    Matthiesen, C. et al. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012).

  27. 27

    Xu, X. et al. Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007).

  28. 28

    Vamivakas, A. N. et al. Observation of spin-dependent quantum jumps via quantum dot resonance fluorescence. Nature 467, 297–300 (2010).

  29. 29

    Delteil, A. et al. Observation of quantum jumps of a single quantum dot spin using sub-microsecond single-shot optical readout. Phys. Rev. Lett. 112, 116802 (2014).

  30. 30

    Carter, S. G. et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nature Photon. 7, 329334 (2013).

  31. 31

    Puri, S., McMahon, P. L. & Yamamoto, Y. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons. Phys. Rev. B 90, 155421 (2014).

  32. 32

    Economou, S. E. et al. Theory of fast optical spin rotation in a quantum dot based on geometric phases and trapped states. Phys. Rev. Lett. 99, 217401 (2007).

  33. 33

    Kim, E. D. et al. Fast spin rotations by optically controlled geometric phases in a charge-tunable InAs quantum dot. Phys. Rev. Lett. 104, 167401 (2010).

  34. 34

    Ramsay, A. J. A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots. Semicond. Sci. Technol. 25, 103001 (2010).

  35. 35

    Berezovsky, J. et al. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

  36. 36

    Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

  37. 37

    Xu, X. et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nature Phys. 4, 692–695 (2008).

  38. 38

    Mikkelsen, M. H. et al. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Phys. 3, 770–773 (2007).

  39. 39

    Greilich, A. et al. Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006).

  40. 40

    Press, D. et al. Ultrafast optical spin echo in a single quantum dot. Nature Photon. 4, 367–370 (2010).

  41. 41

    Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).

  42. 42

    De Greve, K. et al. Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nature Phys. 7, 872–878 (2011).

  43. 43

    Greilich, A. et al. Optical control of one and two hole spins in interacting quantum dots. Nature Photon. 5, 702–708 (2011).

  44. 44

    Weiss, K. M. et al. Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots. Phys. Rev. Lett. 109, 107401 (2012).

  45. 45

    De Greve, K. et al. Complete tomography of a high-fidelity solid-state entangled spin photon qubit pair. Nature Commun. 4, 2228 (2013).

  46. 46

    Marcikic, I. et al. Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502 (2004).

  47. 47

    Duan, L. M. et al. Probabilistic quantum gates between remote atoms through interference of optical frequency qubits. Phys. Rev. A 73, 062324 (2006).

  48. 48

    Gerardot, B. D. et al. Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008).

  49. 49

    Ramsay, A. J. et al. Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008).

  50. 50

    Godden, T. M. et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. Phys. Rev. Lett. 108, 017402 (2012).

  51. 51

    Fischer, J. et al. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

  52. 52

    Fallahi, P., Yilmaz, S. T. & Imamoglu, A. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence. Phys. Rev. Lett. 105, 257402 (2010).

  53. 53

    Chekhovich, E. A. et al. Direct measurement of the hole-nuclear spin interaction in single InP/GaInP quantum dots using photoluminescence spectroscopy. Phys. Rev. Lett. 106, 027402 (2011).

  54. 54

    Urbaszek, B. et al. Nuclear spin physics in quantum dots: An optical investigation. Rev. Mod. Phys 85, 79–133 (2013).

  55. 55

    Kim, D. et al. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Phys. 7, 223–229 (2010).

  56. 56

    Fuchs, G. D. et al. Gigahertz dynamics of a strongly driven single quantum spin. Science 326, 1520–1522 (2009).

  57. 57

    Jelezko, F. et al. Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004).

  58. 58

    De Lange, G., Wang, Z. H., Riste, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

  59. 59

    Ryan, C. A., Hodges, J. S. & Cory, D. G. Robust decoupling techniques to extend quantum coherence in diamond. Phys. Rev. Lett. 105, 200402 (2010).

  60. 60

    Naydenov, B. et al. Dynamical decoupling of a single-electron spin at room temperature. Phys. Rev. B 83, 081201 (2011).

  61. 61

    Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D. & Walsworth, R. L. Solid-state electronic spin coherence time approaching one second. Nature Commun. 4, 1743 (2013).

  62. 62

    Hanson, R. et al. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

  63. 63

    Mizuochi, N. et al. Coherence of single spins coupled to a nuclear spin bath of varying density. Phys. Rev. B 80, 041201 (2009).

  64. 64

    Jiang, L. et al. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267–272 (2009).

  65. 65

    Kolkowitz, S., Bennett, S. D., Unterreithmeier, Q. P. & Lukin, M. D. Sensing distant nuclear spins with a single electron spin. Phys. Rev. Lett. 109, 137601 (2012).

  66. 66

    Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

  67. 67

    Zhao, N. et al. Sensing single remote nuclear spins. Nature Nanotech. 7, 657–662 (2012).

  68. 68

    Maurer, P. C. et al. Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012).

  69. 69

    Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

  70. 70

    Taminiau, T. H., Cramer, J., van der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nature Nanotech. 9, 171–176 (2014).

  71. 71

    Toyli, D. M., Weis, C. D., Fuchs, G. D., Schenkel, T. & Awschalom, D. D. Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10, 3168–3172 (2010).

  72. 72

    Chu, Y. et al. Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett. 14, 1982–1986 (2014).

  73. 73

    Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013).

  74. 74

    Robledo, L. et al. High-fidelity projective read-out of a solid-state spin quantum register. Nature 477, 574–578 (2011).

  75. 75

    Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

  76. 76

    Neumann, P. et al. Single-shot readout of a single nuclear spin. Science 329, 542–544 (2010).

  77. 77

    Dréau, A., Spinicelli, P., Maze, J. R., Roch, J. F. & Jacques, V. Single-shot readout of multiple nuclear spin qubits in diamond under ambient conditions. Phys. Rev. Lett. 110, 60502 (2013).

  78. 78

    Pfaff, W. et al. Demonstration of entanglement-by-measurement of solid-state qubits. Nature Phys. 9, 29–33 (2013).

  79. 79

    Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006).

  80. 80

    Batalov, A. et al. Temporal coherence of photons emitted by single nitrogen-vacancy defect centers in diamond using optical Rabi-oscillations. Phys. Rev. Lett. 100, 77401 (2008).

  81. 81

    Robledo, L., Bernien, H., van Weperen, I. & Hanson, R. Control and coherence of the optical transition of single nitrogen vacancy centers in diamond. Phys. Rev. Lett. 105, 177403 (2010).

  82. 82

    Buckley, B. B., Fuchs, G. D., Bassett, L. C. & Awschalom, D. D. Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212–1215 (2010).

  83. 83

    Yale, C. G. et al. All-optical control of a solid-state spin using coherent dark states. Proc. Natl Acad. Sci. USA 110, 7595–7600 (2013).

  84. 84

    Golter, D. A. & Wang, H. Optically driven Rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett. 112, 116403 (2014).

  85. 85

    Togan, E., Chu, Y., Imamoglu, A. & Lukin, M. D. Laser cooling and real-time measurement of the nuclear spin environment of a solid-state qubit. Nature 478, 497–501 (2011).

  86. 86

    Benson, O. Assembly of hybrid photonic architectures from nanophotonic constituents. Nature 480, 193–199 (2011).

  87. 87

    Faraon, A., Barclay, P. E., Santori, C., Fu, K-M. C. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

  88. 88

    Loncar, M. & Faraon, A. Quantum photonic networks in diamond. MRS Bull. 38, 144–148 (2013).

  89. 89

    Faraon, A. et al. Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012).

  90. 90

    Zaske, S. et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett. 109, 147404 (2012).

  91. 91

    Jiang, L. et al. Coherence of an optically illuminated single nuclear spin qubit. Phys. Rev. Lett. 100, 73001 (2008).

  92. 92

    Blok, M. S. et al. Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nature Phys. 10, 189–193 (2014).

  93. 93

    Aharonovich, I. et al. Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011).

  94. 94

    Kennard, J. E. et al. On-chip manipulation of single photons from a diamond defect. Phys. Rev. Lett. 111, 213603 (2013).

  95. 95

    Müller, T. et al. Optical signatures of silicon-vacancy spins in diamond. Nature Commun. 5, 3328 (2014).

  96. 96

    Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

  97. 97

    Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

  98. 98

    Koehl, W. F. et al. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

  99. 99

    Soltamov, V. A., Soltamova, A. A., Baranov, P. G. & Proskuryakov, I. I. Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. Phys. Rev. Lett. 108, 226402 (2012).

  100. 100

    Falk, A. L. et al. Polytype control of spin qubits in silicon carbide. Nature Commun. 4, 1819 (2013).

  101. 101

    Christle, D. J. et al. Isolated electron spins in silicon carbide with millisecond-coherence times. Nature Mater. 14, 160–163 (2015).

  102. 102

    Widmann, M. et al. Coherent control of single spins in silicon carbide at room temperature. Nature Mater. 14, 164–168 (2015).

  103. 103

    Calusine, G., Politi, A. & Awschalom, D. D. Silicon carbide photonic crystal cavities with integrated color centers. Appl. Phys. Lett. 105, 011123 (2014).

  104. 104

    Yin, C. et al. Optical addressing of an individual erbium ion in silicon. Nature 497, 91–94 (2013).

  105. 105

    Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nature Commun. 3, 1029 (2012).

  106. 106

    Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nature Commun. 5, 3627 (2014).

  107. 107

    Siyushev, P. et al. Coherent properties of single rare-earth spin qubits. Nature Commun. 5, 3895 (2014).

  108. 108

    Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

  109. 109

    Munsch, M. et al. Dielectric GaAs antenna ensuring an efficient broadband coupling between an InAs quantum dot and a Gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013).

  110. 110

    Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nano. 5, 195–199 (2010).

  111. 111

    Santori, C. et al. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

  112. 112

    Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nature Commun. 4, 1425 (2013).

  113. 113

    Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

  114. 114

    Arnold, C. et al. Macroscopic rotation of photon polarization induced by a single spin. Nature Commun. 6, 6236 (2015).

  115. 115

    Leuenberger, M. N. Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots. Phys. Rev. B 73, 075312 (2006).

  116. 116

    Hu, C. Y. et al. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008).

  117. 117

    Bonato, C. et al. CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010).

  118. 118

    Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

  119. 119

    Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

  120. 120

    Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–869 (2007).

  121. 121

    Pinotsi, D., Fallahi, P., Miguel-Sanchez, J. & Imamoglu, A. Resonant spectroscopy on charge tunable quantum dots in photonic crystal structures. IEEE J. Quantum Electron. 47, 1371–1374 (2011).

  122. 122

    Miguel-Sanchez, J. et al. Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity. New J. Phys. 15, 045002 (2013).

  123. 123

    Luxmoore, I. J. et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett. 110, 037402 (2013).

  124. 124

    Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nature Photon. 7, 210–214 (2013).

  125. 125

    Reithmaier, G. et al. On-chip generation, routing and detection of quantum light. Preprint at http://arxiv.org/abs/1408.2275 (2014).

  126. 126

    Fry, P. W. et al. Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. Phys. Rev. Lett. 84, 733–736 (2000).

Download references

Acknowledgements

We thank Lily Childress, Yves Delley, Aymeric Delteil, Bas Hensen, Martin Kroner, Wolfgang Pfaff, Tim Taminiau, Emre Togan and Sun Zhe for many useful discussions. We acknowledge support from the NCCR Quantum Science and Technology (NCCR QSIT), the research instrument of the Swiss National Science Foundation (SNS) under grant no. 200021-140818, the Dutch Organization for Fundamental Research on Matter (FOM), the EU S3NANO program and the European Research Council through a Starting Grant.

Author information

Correspondence to A. Imamoglu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Imamoglu, A., Bernien, H. et al. Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nature Photon 9, 363–373 (2015) doi:10.1038/nphoton.2015.58

Download citation

Further reading