Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Compact nanomechanical plasmonic phase modulators

Abstract

Highly confined optical energy in plasmonic devices is advancing miniaturization in photonics. However, for mode sizes approaching ≈10 nm, the energy increasingly shifts into the metal, raising losses and hindering active phase modulation. Here, we propose a nanoelectromechanical phase-modulation principle exploiting the extraordinarily strong dependence of the phase velocity of metal–insulator–metal gap plasmons on dynamically variable gap size. We experimentally demonstrate a 23-μm-long non-resonant modulator having a 1.5π rad range, with 1.7 dB excess loss at 780 nm. Analysis shows that by simultaneously decreasing the gap, length and width, an ultracompact-footprint π rad phase modulator can be realized. This is achieved without incurring the extra loss expected for plasmons confined in a decreasing gap, because the increasing phase-modulation strength from a narrowing gap offsets rising propagation losses. Such small, high-density electrically controllable components may find applications in optical switch fabrics and reconfigurable plasmonic optics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: GPPM.
Figure 2: Measured out-coupler intensity profiles.
Figure 3: GPPM phase modulation and excess optical loss.
Figure 4: GPPM scaling.

References

  1. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

    Book  Google Scholar 

  2. Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    ADS  Article  Google Scholar 

  3. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Article  Google Scholar 

  4. Dionne, J. A., Sweatlock, L. A., Atwater, H. A. & Polman, A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).

    ADS  Article  Google Scholar 

  5. Pile, D. F. P. et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

    ADS  Article  Google Scholar 

  6. Thijssen, R., Verhagen, E., Kippenberg, T. J. & Polman, A. Plasmon nanomechanical coupling for nanoscale transduction. Nano Lett. 13, 3293–3297 (2013).

    ADS  Article  Google Scholar 

  7. Kuttge, M., Cai, W., García de Abajo, F. J. & Polman, A. Dispersion of metal–insulator–metal plasmon polaritons probed by cathodoluminescence imaging spectroscopy. Phys. Rev. B 80, 033409 (2009).

    ADS  Article  Google Scholar 

  8. Woolf, D., Loncar, M. & Capasso, F. The forces from coupled surface plasmon polaritons in planar waveguides. Opt. Express 17, 19996–20011 (2009).

    ADS  Article  Google Scholar 

  9. Bozhevolnyi, S. I. & Jung, J. Scaling for gap plasmon based waveguides. Opt. Express 16, 2676–2684 (2008).

    ADS  Article  Google Scholar 

  10. Chen, J., Smolyakov, G. A., Brueck, S. R. J. & Malloy, K. J. Surface plasmon modes of finite, planar, metal–insulator–metal plasmonic waveguides. Opt. Express 16, 14902–14909 (2008).

    ADS  Article  Google Scholar 

  11. Pile, D. F. P., Gramotnev, D. K., Oulton, R. F. & Zhang, X. On long-range plasmonic modes in metallic gaps. Opt. Express 15, 13669–13674 (2007).

    ADS  Article  Google Scholar 

  12. Liu, L., Han, Z. & He, S. Novel surface plasmon waveguide for high integration. Opt. Express 13, 6645–6650 (2005).

    ADS  Article  Google Scholar 

  13. Veronis, G. & Fan, S. Guided subwavelength plasmonic mode support by a slot in a thin metal film. Opt. Lett. 30, 3359–3361 (2005).

    ADS  Article  Google Scholar 

  14. Pile, D. F. P. & Gramotnev, D. K. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 041111 (2006).

    ADS  Article  Google Scholar 

  15. Choo, H. et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photon. 277, 838–834 (2012).

    ADS  Article  Google Scholar 

  16. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    ADS  Article  Google Scholar 

  17. Sorger, V. J. et al. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nature Commun. 2, 331 (2011).

    ADS  Article  Google Scholar 

  18. Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm thick and 55 nm long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006).

    ADS  Article  Google Scholar 

  19. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  20. Lee, B. G. et al. Monolithic silicon integration of scaled photonic switch fabrics, MOS logic, and device driver circuits. J. Lightw. Technol. 32, 743–751 (2014).

    ADS  Article  Google Scholar 

  21. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nature Mater. 13, 139–150 (2014).

    ADS  Article  Google Scholar 

  22. Haffner, C. et al. High-speed plasmonic Mach–Zehnder modulator in a waveguide. Eur. Conf. Opt. Com. (ECOC) PD.2.6 (2014).

  23. Beggs, D. M., White, T. P., Kampfrath, T., Kuipers, K. & Krauss, T. F. Slow-light photonic crystal switches and modulators. Proc. SPIE 7606, 76060N (2010).

    ADS  Article  Google Scholar 

  24. Melikyan, A. et al. High-speed plasmonic phase modulators. Nature Photon. 8, 229–233 (2014).

    ADS  Article  Google Scholar 

  25. Poot, M. & Tang, H. X. Broadband nanoelectromechanical phase shifting of light on a chip. Appl. Phys. Lett. 104, 061101 (2014).

    ADS  Article  Google Scholar 

  26. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    ADS  Article  Google Scholar 

  27. Sun, X., Zhang, X., Poot, M., Xiong, C. & Tang, H. X. A superhigh-frequency optoelectromechanical system based on a slotted photonic crystal cavity. Appl. Phys. Lett. 101, 221116 (2012).

    ADS  Article  Google Scholar 

  28. Miao, H., Srinivasan, K. & Aksyuk, V. A microelectromechanically controlled cavity optomechanical sensing system. New J. Phys. 14, 075015 (2012).

    ADS  Article  Google Scholar 

  29. Sorger, V. J., Lanzillotti-Kimura, N. D., Ma, R. M. & Zhang, X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1, 17–22 (2012).

    ADS  Article  Google Scholar 

  30. Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: a metal–oxide–Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

    ADS  Article  Google Scholar 

  31. Dionne, J. A., Lezec, H. J. & Atwater, H. A. Highly confined photon transport in subwavelength metallic slot waveguides. Nano Lett. 6, 1928–1932 (2006).

    ADS  Article  Google Scholar 

  32. Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).

    ADS  Article  Google Scholar 

  33. Yang, R. & Lu, Z. Silicon-on-insulator platform for integration of 3-D nanoplasmonic devices. ECOC IEEE Photon. Technol. Lett. 23, 22 (2011).

  34. Skorobogatiy, M. Nanostructured and Subwavelength Waveguides: Fundamentals and Applications (Wiley, 2012).

    Book  Google Scholar 

  35. Kocabas, S. E., Veronis, G., Miller, D. A. B. & Fan, S. Modal analysis and coupling in metal–insulator–metal waveguides. Phys. Rev. B 79, 035120 (2009).

    ADS  Article  Google Scholar 

  36. Anglin, K., Adams, D. C., Ribaudo, T. & Wasserman, D. Toothed mid-infrared metal–insulator–metal waveguides. Proc. OSA/CLEO 1–2 (2011); http://doi.org/2sm

  37. Soref, R. Peale, R. E. Buchwald, I . & Cleary, J. Silicon plasmonic waveguides for the infrared and terahertz regions. Proc. OSA FiO/LS/META/OF&T 1–3 (2008); http://doi.org/2sn

  38. Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    ADS  Article  Google Scholar 

  39. Nathanson, H. C., Newell, W. E., Wickstrom, R. A. & Davis, J. R. Jr. The resonant gate transistor. IEEE Trans. Electron. Dev. ED-14(3), 117–133 (1967).

    ADS  Article  Google Scholar 

  40. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  41. Haus, J. W., de Ceglia, D., Vincenti, M. A. & Scalora, M. Quantum conductivity for metal–insulator–metal nanostructures. J. Opt. Soc. Am. B 31, 259–269 (2014).

    ADS  Article  Google Scholar 

  42. Chen, J., He, L., Farson, D. F. & Rokhlin, S. I. Review: experiments and simulations for small-scale electrical discharges. Welding J. 90, 161S–170S (2011).

    Google Scholar 

  43. Stroscio, J. A., Feenstra, R. M. & Fein, A. P. Electronic structure of the Si(111)2 × 1 surface by scanning-tunneling microscopy. Phys. Rev. Lett. 57, 2579–2582 (1986).

    ADS  Article  Google Scholar 

  44. Czaplewski, D. A., Nordquist, C. D., Patrizi, G. A., Kraus, G. M. & Cowan, W. D. RF MEMS switches with RuO2–Au contacts cycled to 10B cycles. J. Microelectromech. Syst. 22, 655–661 (2013).

    Article  Google Scholar 

  45. De Pasquale, G. & Somà, A. MEMS mechanical fatigue: effect of mean stress on gold microbeams. J. Microelectromech. Syst. 20, 1054, 1063 (2011).

  46. Gaidarzhy, A., Imboden, M., Mohanty, P., Rankin, J. & Sheldon, B. W. High quality factor gigahertz frequencies in nanomechanical diamond resonators. Appl. Phys. Lett. 91, 203503 (2007).

    ADS  Article  Google Scholar 

  47. Yi, Z. & Liao, X. A capacitive power sensor based on the MEMS cantilever beam fabricated by GaAs MMIC technology. J. Micromech. Microeng. 23, 035001 (2013).

    ADS  Article  Google Scholar 

  48. Copel, M. et al. Giant piezoresistive on/off ratios in rare-earth chalcogenide thin films enabling nanomechanical switching. Nano Lett. 13, 4650–4653 (2013).

    ADS  Article  Google Scholar 

  49. Newns, D., Elmegreen, B., Liu, X. H. & Martyna, G. A low-voltage high-speed electronic switch based on piezoelectric transduction. J. Appl. Phys. 111, 084509 (2012).

    ADS  Article  Google Scholar 

  50. Baek, S. H. et al. Giant piezoelectricity on Si for hyper-active MEMS. Science 334, 958–961 (2011).

    ADS  Article  Google Scholar 

  51. Aksyuk, V. A. Design and modeling of an ultracompact 2x2 nanomechanical plasmonic switch. Preprint at http://arxiv.org/abs/1412.5876 (2014).

Download references

Acknowledgements

The authors acknowledge support from the Measurement Science and Engineering Research Grant Program of the National Institute of Standards and Technology (award nos. 70NANB14H259 and 70NANB14H030) and the Air Force Office of Scientific Research (grant no. FA9550-09-1-0698). The authors thank A. Agrawal and H. Lezec for their technical suggestions and insightful comments on the manuscript, G. Holland and A. Band for their technical help with the experimental set-up and P. Lubik for his programming assistance. Computational support from the Department of Defense High Performance Computation Modernization project is acknowledged. This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility (contract no. DE-AC02-06CH11357).

Author information

Authors and Affiliations

Authors

Contributions

B.S.D. developed the fabrication process, designed and fabricated the modulators, performed the experiments, analysed the data and wrote the manuscript. M.I.H. developed an analytical model and wrote the manuscript. G.B. developed the concept, designed the experiment and wrote the manuscript. D.A.C and D.L. developed the fabrication process. V.A.A. developed the concept, designed the experiment, performed simulations, developed the fabrication process, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to V. A. Aksyuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 827 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dennis, B., Haftel, M., Czaplewski, D. et al. Compact nanomechanical plasmonic phase modulators. Nature Photon 9, 267–273 (2015). https://doi.org/10.1038/nphoton.2015.40

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.40

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing