Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy

Abstract

For decades, optical studies of single molecules have relied on fluorescence detection. The availability of alternative approaches for single-molecule interrogation would greatly expand the range of addressable molecules beyond species that are highly emissive and photostable, thus offering new applications in fields other than molecular biophysics and imaging. Here, we discuss the range of recent developments in optical label-free detection and imaging schemes that offer single-molecule sensitivity, with an emphasis on plasmonically enhanced and scattering-based approaches. We highlight the advantages and challenges facing these emerging methodologies and briefly outline their potential future applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Surface-enhanced Raman spectroscopy.
Figure 2: Spectral nanoplasmonic detection of single molecules.
Figure 3: Double nanohole slit single-molecule detection.
Figure 4: Cavity-enhanced detection.
Figure 5: Single-molecule detection and imaging via iSCAT.

References

  1. 1

    Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    ADS  Article  Google Scholar 

  2. 2

    Yildiz, A. et al. Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Maxwell, J. C. Molecules. Nature 8, 437–441 (1873).

    Article  Google Scholar 

  4. 4

    Mamin, H. J. et al. Nanoscale nuclear magnetic resonance with a nitrogen-vacancy spin sensor. Science 339, 557–560 (2013).

    ADS  Article  Google Scholar 

  5. 5

    Staudacher, T. et al. Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science 339, 561–563 (2013).

    ADS  Article  Google Scholar 

  6. 6

    McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    ADS  Article  Google Scholar 

  7. 7

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Harris, T. D. et al. Single-molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008).

    ADS  Article  Google Scholar 

  9. 9

    Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    ADS  Article  Google Scholar 

  10. 10

    Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

    ADS  Article  Google Scholar 

  11. 11

    Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    ADS  Article  Google Scholar 

  12. 12

    Hwang, J. et al. A single-molecule optical transistor. Nature 460, 76–80 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010).

    Article  Google Scholar 

  14. 14

    Kaiser, H. J. et al. Order of lipid phases in model and plasma membranes. Proc. Natl Acad. Sci. USA 106, 16645–16650 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Staneva, G., Seigneuret, M., Conjeaud, H., Puff, N. & Angelova, M. I. Making a tool of an artifact: the application of photoinduced Lo domains in giant unilamellar vesicles to the study of Lo/Ld phase spinodal decomposition and its modulation by the ganglioside GM1. Langmuir 27, 15074–15082 (2011).

    Article  Google Scholar 

  16. 16

    Mascalchi, P., Haanappel, E., Carayon, K., Mazères, S. & Salomé, L. Probing the influence of the particle in single particle tracking measurements of lipid diffusion. Soft Matter 8, 4462–4470 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Rajapaksa, I. & Wickramasinghe, H. K. Raman spectroscopy and microscopy based on mechanical force detection. Appl. Phys. Lett. 99, 161103 (2011).

    ADS  Article  Google Scholar 

  18. 18

    Chen, C., Chu, P., Bobisch, C. A., Mills, D. L. & Ho, W. Viewing the interior of a single molecule: vibronically resolved photon imaging at submolecular resolution. Phys. Rev. Lett. 105, 217402 (2010).

    ADS  Article  Google Scholar 

  19. 19

    Hwang, J., Fejer, M. & Moerner, W. E. Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter. Phys. Rev. A 73, 021802 (2006).

    ADS  Article  Google Scholar 

  20. 20

    Hofkens, J. & Roeffaers, M. B. J. Microscopy: single-molecule light absorption. Nature Photon. 5, 80–81 (2011).

    ADS  Article  Google Scholar 

  21. 21

    Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nature Photon. 5, 95–98 (2011).

    ADS  Article  Google Scholar 

  22. 22

    Chong, S., Min, W. & Xie, X. S. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010).

    Article  Google Scholar 

  23. 23

    Gaiduk, A., Yorulmaz, M., Ruijgrok, P. V. & Orrit, M. Room-temperature detection of a single molecule's absorption by photothermal contrast. Science 330, 353–356 (2010).

    ADS  Article  Google Scholar 

  24. 24

    Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    ADS  Article  Google Scholar 

  25. 25

    Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry. J. Electronanal. Chem. 84, 1–20 (1977).

    Article  Google Scholar 

  26. 26

    Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  27. 27

    Yampolsky, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nature Photon. 8, 650–656 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    ADS  Article  Google Scholar 

  29. 29

    Wang, Y. & Irudayaraj, J. Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology. Phil. Trans. R. Soc. Lond. B 368, 20120026 (2012).

    Article  Google Scholar 

  30. 30

    Sonntag, M. D. et al. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 478–483 (2011).

    Article  Google Scholar 

  31. 31

    Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    ADS  Article  Google Scholar 

  32. 32

    Thacker, V. V. et al. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nature Commun. 5, 3448 (2014).

    ADS  Article  Google Scholar 

  33. 33

    Galloway, C. M. et al. Plasmon-assisted delivery of single nano-objects in an optical hot spot. Nano Lett. 13, 4299–4304 (2013).

    ADS  Article  Google Scholar 

  34. 34

    Ament, I., Prasad, J., Henkel, A., Schmachtel, S. & Sönnichsen, C. Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett. 12, 1092–1095 (2012).

    ADS  Article  Google Scholar 

  35. 35

    Zijlstra, P., Paulo, P. M. R. & Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nature Nanotech. 7, 379–382 (2012).

    ADS  Article  Google Scholar 

  36. 36

    Beuwer, M. A., Prins, M. W. J. & Zijlstra, P. Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors. Nano Lett. 15, 3507–3511 (2015).

    ADS  Article  Google Scholar 

  37. 37

    Al Balushi, A. A., Zehtabi-Oskuie, A. & Gordon, R. Observing single protein binding by optical transmission through a double nanohole aperture in a metal film. Biomed. Opt. Express 4, 1504–1511 (2013).

    Article  Google Scholar 

  38. 38

    Wheaton, S., Gelfand, R. M. & Gordon, R. Probing the Raman-active acoustic vibrations of nanoparticles with extraordinary spectral resolution. Nature Photon. 9, 68–72 (2014).

    ADS  Article  Google Scholar 

  39. 39

    Weigel, A. & Kukura, P. Acoustic vibrational spectroscopy: Raman extraordinaire. Nature Photon. 9, 11–12 (2014).

    ADS  Article  Google Scholar 

  40. 40

    Vollmer, F. & Arnold, S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nature Methods 5, 591–596 (2008).

    Article  Google Scholar 

  41. 41

    Dantham, V. R. et al. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 13, 3347–3351 (2013).

    ADS  Article  Google Scholar 

  42. 42

    Baaske, M. D., Foreman, M. R. & Vollmer, F. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nature Nanotech. 9, 933–939 (2014).

    ADS  Article  Google Scholar 

  43. 43

    Armani, A. M., Kulkarni, R. P., Fraser, S. E., Flagan, R. C. & Vahala, K. J. Label-free, single-molecule detection with optical microcavities. Science 317, 783–787 (2007).

    ADS  Article  Google Scholar 

  44. 44

    Andrecka, J., Spillane, K. M., Ortega Arroyo, J. & Kukura, P. Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS Nano 7, 10662–10670 (2013).

    Article  Google Scholar 

  45. 45

    de Wit, G., Danial, J. S. H., Kukura, P. & Wallace, M. I. Dynamic label-free imaging of lipid nanodomains. Proc. Natl Acad. Sci. USA 112, 12299–12303 (2015).

    ADS  Article  Google Scholar 

  46. 46

    Cohen, S. I. A. et al. A molecular chaperone breaks the catalytic cycle that generates toxic Aβ oligomers. Nature Struct. Mol. Biol. 22, 207–213 (2015).

    Article  Google Scholar 

  47. 47

    Dumont, E. L. P., Do, C. & Hess, H. F. Molecular wear of microtubules propelled by surface-adhered kinesins. Nature Nanotech. 10, 166–169 (2015).

    ADS  Article  Google Scholar 

  48. 48

    Lindfors, K., Kalkbrenner, T., Stoller, P. & Sandoghdar, V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401 (2004).

    ADS  Article  Google Scholar 

  49. 49

    Kukura, P. et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nature Methods 6, 923–927 (2009).

    Article  Google Scholar 

  50. 50

    Ortega Arroyo, J. & Kukura, P. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys. Chem. Chem. Phys. 14, 15625–15636 (2012).

    Article  Google Scholar 

  51. 51

    Ortega Arroyo, J. et al. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014).

    ADS  Article  Google Scholar 

  52. 52

    Piliarik, M. & Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nature Commun. 5, 4495 (2014).

    ADS  Article  Google Scholar 

  53. 53

    Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    ADS  Article  Google Scholar 

  54. 54

    Sonntag, M. D., Chulhai, D., Seideman, T., Jensen, L. & Van Duyne, R. P. The origin of relative intensity fluctuations in single-molecule tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 135, 17187–17192 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

J.O.A. was supported by a scholarship from CONACyT (scholar 213546) and P.K. by an ERC Starting Investigator Grant (Nanoscope, 337757).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philipp Kukura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arroyo, J., Kukura, P. Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy. Nature Photon 10, 11–17 (2016). https://doi.org/10.1038/nphoton.2015.251

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing