Letter | Published:

High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate

Nature Photonics volume 9, pages 721724 (2015) | Download Citation

Abstract

Powerful coherent light with a spectrum spanning the mid-infrared (MIR) spectral range is crucial for a number of applications in natural as well as life sciences, but so far has only been available from large-scale synchrotron sources1. Here we present a compact apparatus that generates pulses with a sub-two-cycle duration and with an average power of 0.1 W and a spectral coverage of 6.8–16.4 μm (at −30 dB). The demonstrated source combines, for the first time in this spectral region, a high power, a high repetition rate and phase coherence. The MIR pulses emerge via difference-frequency generation (DFG) driven by the nonlinearly compressed pulses of a Kerr-lens mode-locked ytterbium-doped yttrium–aluminium–garnet (Yb:YAG) thin-disc oscillator. The resultant 100 MHz MIR pulse train is hundreds to thousands of times more powerful than state-of-the-art frequency combs that emit in this range2,3,4, and offers a high dynamic range for spectroscopy in the molecular fingerprint region4,5,6,7 and an ideal prerequisite for hyperspectral imaging8 as well as for the time-domain coherent control of vibrational dynamics9,10,11.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Far-IR/THz spectral characterization of the coherent synchrotron radiation emission at diamond IR beamline B22. Rend. Fis. Acc. Lincei 25 (suppl. 1), 33–47 (2011).

  2. 2.

    et al. Milliwatt-level frequency combs in the 8–14 μm range via difference frequency generation from an Er:fiber oscillator. Opt. Lett. 38, 1155–1157 (2013).

  3. 3.

    & Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. J. Infrared Millim. Te. 33, 479–484 (2012).

  4. 4.

    , & Mid-infrared frequency combs. Nature Photon. 6, 440–449 (2012).

  5. 5.

    , , & Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010).

  6. 6.

    et al. Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 µm) optical parametric oscillator. Appl. Phys. B 75, 367 (2002).

  7. 7.

    & . Fourier Transform Infrared Spectrometry 2nd edn (Wiley, 2007).

  8. 8.

    et al. IR microscopy utilizing intense supercontinuum light source. Opt. Express 20, 4887–4892 (2012).

  9. 9.

    et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

  10. 10.

    et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon. 8, 119–123 (2014).

  11. 11.

    & Attosecond metrology: from electron capture to future signal processing. Nature Photon. 8, 205–213 (2014).

  12. 12.

    et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath. Anal. Chem. 74, 2003–2008 (2002).

  13. 13.

    , , , & Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2013).

  14. 14.

    , & New mid-infrared light sources. IEEE JSTQE 18, 521–540 (2012).

  15. 15.

    , , , & Fourier transform spectroscopy around 3 µm with a broad difference frequency comb. Appl. Phys. B 114, 573–578 (2014).

  16. 16.

    et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

  17. 17.

    et al. High-flux table-top soft X-ray source driven by sub-2-cycle, CEP stable, 1.85-µm 1-kHz pulses for carbon K-edge spectroscopy. Opt. Lett. 39, 5383–5386 (2014).

  18. 18.

    Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources. Opt. Mater. 34, 536–554 (2012).

  19. 19.

    et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nature Photon. 8, 830–834 (2014).

  20. 20.

    et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt. Express 23, 3282–3291 (2015).

  21. 21.

    , , & Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory. Appl. Phys. Lett. 75, 1060–1062 (1999).

  22. 22.

    , , & Efficient, octave-spanning difference-frequency generation using few-cycle pulses in simple collinear geometry. Opt. Lett. 38, 4216–4219 (2013).

  23. 23.

    et al. 260-megahertz, megawatt-level thin-disk oscillator. Opt. Lett. 40, 1627–1630 (2015).

  24. 24.

    et al. High-power multi-megahertz source of waveform-stabilised few-cycle light. Nature Commun. 6, 6988 (2015).

  25. 25.

    , & Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling. Opt. Lett. 39, 2435–2438 (2014).

  26. 26.

    et al. Growth and properties of LiGaX2 (X = S, Se, Te) single crystals for nonlinear optical applications in the mid-IR. Cryst. Res. Technol. 38, 379–387 (2003).

  27. 27.

    et al. Energy scaling of Kerr-lens mode-locked thin-disk oscillators. Opt. Lett. 39, 6442–6445 (2014).

  28. 28.

    , , , & Sub 25 fs pulses from solid core nonlinear compression stage at 250 W of average power. Opt. Lett. 37, 4407–4409 (2012).

  29. 29.

    Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

  30. 30.

    General numerical methods for simulating second-order nonlinear interactions in birefringent media. J. Opt. Soc. Am. B 14, 2543–2549 (1997).

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Munich Centre for Advanced Photonics’, Fundacio Cellex Barcelona, the Ministerio de Economa y Competitividad through Plan Nacional (FIS2011-30465-C02-01), the Catalan Agencia de Gestió D'Ajuts Universitaris i de Recerca with SGR 2014-2016 and Laserlab-Europe grant agreement 284464.

Author information

Author notes

    • T. Paasch-Colberg

    Present addresses: TOPTICA Photonics AG, Lochhamer Schlag 19, Gräfelfing 82166, Germany

Affiliations

  1. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, Garching 85748, Germany

    • I. Pupeza
    • , J. Zhang
    • , N. Lilienfein
    • , M. Seidel
    • , N. Karpowicz
    • , I. Znakovskaya
    • , E. Fill
    • , O. Pronin
    • , F. Krausz
    •  & A. Apolonski
  2. ICFO – Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

    • I. Pupeza
    • , D. Sánchez
    •  & J. Biegert
  3. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

    • J. Zhang
    •  & Z. Wei
  4. Fakultät für Physik, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748, Germany

    • N. Lilienfein
    • , M. Seidel
    • , T. Paasch-Colberg
    • , I. Znakovskaya
    • , M. Pescher
    • , W. Schweinberger
    • , V. Pervak
    • , E. Fill
    • , O. Pronin
    • , F. Krausz
    •  & A. Apolonski
  5. Department of Physics & Astronomy, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia

    • T. Paasch-Colberg
    •  & W. Schweinberger
  6. ICREA – Instituciò Catalana de Recerca i Estudis Avancats, Barcelona 08010, Spain

    • J. Biegert

Authors

  1. Search for I. Pupeza in:

  2. Search for D. Sánchez in:

  3. Search for J. Zhang in:

  4. Search for N. Lilienfein in:

  5. Search for M. Seidel in:

  6. Search for N. Karpowicz in:

  7. Search for T. Paasch-Colberg in:

  8. Search for I. Znakovskaya in:

  9. Search for M. Pescher in:

  10. Search for W. Schweinberger in:

  11. Search for V. Pervak in:

  12. Search for E. Fill in:

  13. Search for O. Pronin in:

  14. Search for Z. Wei in:

  15. Search for F. Krausz in:

  16. Search for A. Apolonski in:

  17. Search for J. Biegert in:

Contributions

I.P., D.S., J.Z., N.L., M.S., N.K., T.P., W.S., V.P., E.F., O.P., Z.W., F.K., A.A. and J.B. conceived and designed the experiments. I.P., D.S., J.Z., N.L., M.S., T.P., I.Z., M.P., W.S. and V.P. performed the experiments. I.P., D.S., N.L., M.S., N.K., T.P., I.Z. and W.S. analysed the data. I.P., D.S., J.Z., N.L., M.S., N.K., T.P., I.Z., V.P., E.F., O.P., Z.W., F.K., A.A. and J.B. contributed materials and/or analysis tools. I.P., D.S., J.Z., N.L., M.S., N.K., T.P., M.P., W.S., E.F., F.K., A.A. and J.B. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to I. Pupeza.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2015.179

Further reading